Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery

Abstract

The tightly controlled induction of Plasmodium falciparum gametocytes in large-scale culture is a fundamental requirement for malaria drug discovery applications including, but not limited to, high-throughput screening. This protocol uses magnetic separation for isolation of hemozoin-containing parasites in order to (i) increase parasitemia, (ii) decrease hematocrit and (iii) introduce higher levels of young red blood cells in a culture simultaneously within 2–4 h. These parameters, along with red blood cell lysis products that are generated through schizont rupture, are highly relevant for enabling optimum induction of gametocytogenesis in vitro. No other previously published protocols have applied this particular approach for parasite isolation and maximization of fresh red blood cells before inducing gametocytogenesis, which is essential for obtaining highly synchronous gametocyte classical stages on a large scale. In summary, 500–1,000 million stage IV gametocytes can be obtained within 16 d from an initial 10 ml of asexual blood-stage culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intra-erythrocytic life cycle of P. falciparum.
Figure 2: Gametocyte induction workflow.
Figure 3: Representative images of 100× oil-immersion bright-field micrographs of Giemsa-stained thin blood smears.
Figure 4: High-throughput late-stage gametocyte confocal imaging assay performance.
Figure 5: VarioMACS preparation for PROCEDURE Steps 14–18, 24A(iv–vi), 24B(iii), 25 and 26.

Similar content being viewed by others

References

  1. Sinden, R.E., Carter, R., Drakeley, C. & Leroy, D. The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies. Malar. J. 11, 70 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baker, D.A. Malaria gametocytogenesis. Mol. Biochem. Parasitol. 172, 57–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adjalley, S.H. et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc. Natl. Acad. Sci. USA 108, E1214–E1223 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lucantoni, L. et al. Identification of MMV malaria box inhibitors of Plasmodium falciparum early-stage gametocytes, using a luciferase-based high-throughput assay. Antimicrob. Agents Chemother. 57, 6050–6062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duffy, S. & Avery, V.M. Identification of inhibitors of Plasmodium falciparum gametocyte development. Malar. J. 12, 408 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Duez, J. et al. Splenic retention of Plasmodium falciparum gametocytes to block the transmission of malaria. Antimicrob. Agents Chemother. 59, 4206–4214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lucanoni, L. et al. A simple and predictive phenotypic high content imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds. Sci. Rep. 5, 16414 (2015).

    Article  CAS  Google Scholar 

  8. Lelievre, J. et al. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence 'transmission blocking' assay. PloS One 7, e35019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peatey, C.L., Spicer, T.P., Hodder, P.S., Trenholme, K.R. & Gardiner, D.L. A high-throughput assay for the identification of drugs against late-stage Plasmodium falciparum gametocytes. Mol. Biochem. Parasitol. 180, 127–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. D'Alessandra, S. et al. A Plasmodium falciparum screening assay for anti-gametocyte drugs based on parasite lactate dehydrogenase detection. J. Antimicrob. Chemother. 68, 2048–2058 (2013).

    Article  CAS  Google Scholar 

  11. Tanaka, T.Q. & Williamson, K.C. A malaria gametocytocidal assay using oxidoreduction indicator, alamarBlue. Mol. Biochem. Parasitol. 177, 160–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanaka, T.Q. et al. A quantitative high throughput assay for identifying gametocytocidal compounds. Mol. Biochem. Parasitol. 188, 20–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bowman, J.D. et al. Antiapicoplast and gametocytocidal screening to identify the mechanisms of action of compounds within the Malaria Box. Antimicrob. Agents Chemother. 58, 811–819 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang, Z. et al. A flow cytometry-based quantitative drug sensitivity assay for all Plasmodium falciparum gametocyte stages. PloS One 9, e93825 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cevenini, L. et al. Multicolor bioluminescence boosts malaria research: quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites. Anal. Chem. 86, 8814–8821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tao, D. et al. Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology. Mol. Cell Proteomics 13, 2705–2724 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Silvestrini, F. et al. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol. Biochem. Parasitol. 143, 100–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Creek, D.J. & Barrett, M.P. Determination of antiprotozoal drug mechanisms by metabolomics approaches. Parasitology 141, 83–92 (2014).

    Article  PubMed  Google Scholar 

  19. Tibúrcio, M. et al. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface. Cell Microbiol. 15, 647–659 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. Ruecker, A. et al. A male and female gametocyte functional viability assay to identify biologically relevant malaria transmission-blocking drugs. Antimicrob. Agents Chemother. 58, 7292–7302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miguel-Blanco, C. et al. Imaging-based HTS assay to identify new molecules with transmission-blocking potential against P. falciparum female gamete formation. Antimicrob. Agents Chemother. 59, 3298–3305 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miura, K. et al. Qualification of standard membrane-feeding assay with Plasmodium falciparum malaria and potential improvements for future assays. PloS One 8, e57909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roncalés, M., Vidal-Mas, J., Leroy, D. & Herreros, E. Comparison and optimization of different methods for the in vitro production of Plasmodium falciparum gametocytes. J. Parasitol. Res. 2012, 927148 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ponnudurai, T., Meuwissen, J.H., Leeuwenberg, A.D., Verhave, J.P. & Lensen, A.H. The production of mature gametocytes of Plasmodium falciparum in continuous cultures of different isolates infective to mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 76, 242–250 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Dyer, M. & Day, K.P. Regulation of the rate of asexual growth and commitment to sexual development by diffusible factors from in vitro cultures of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 68, 403–409 (2003).

    Article  PubMed  Google Scholar 

  26. Williams, J.L. Stimulation of Plasmodium falciparum gametocytogenesis by conditioned medium from parasite cultures. Am. J. Trop. Med. Hyg. 60, 7–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Trager, W. & Gill, G.S. Enhanced gametocyte formation in young erythrocytes by Plasmodium falciparum in vitro. J. Protozool. 39, 429–432 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Trager, W., Gill, G.S., Lawrence, C. & Nagel, R.L. Plasmodium falciparum: enhanced gametocyte formation in vitro in reticulocyte-rich blood. Exp. Parasitol. 91, 115–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Carter, R. & Miller, L.H. Evidence for environmental modulation of gametocytogenesis in Plasmodium falciparum in continuous culture. Bull World Health Org. 57, 37–52 (1979).

    PubMed  PubMed Central  Google Scholar 

  30. Bruce, M.C., Alano, P., Duthie, S. & Carter, R. Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development. Parasitology 2, 191–200 (1990).

    Article  Google Scholar 

  31. Akompong, T., Eksi, S., Williamson, K. & Haldar, K. Gametocytocidal activity and synergistic interactions of riboflavin with standard antimalarial drugs against growth of Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 44, 3107–3111 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fivelman, Q.L. et al. Improved synchronous production of Plasmodium falciparum gametocytes in vitro. Mol. Biochem. Parasitol. 154, 119–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Cranmer, S.L., Magowan, C., Liang, J., Coppel, R.L. & Cooke, B.M. An alternative to serum for cultivation of Plasmodium falciparum in vitro. Trans. R. Soc. Trop. Med. Hyg. 91, 363–365 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Reader, J. et al. Nowhere to hide: interrogating different metabolic parameters of Plasmodium falciparum gametocytes in a transmission blocking drug discovery pipeline towards malaria elimination. Malar. J. 14, 213 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Frankland, S. et al. Serum lipoproteins promote efficient presentation of the malaria virulence protein PfEMP1 at the erythrocyte surface. Eukaryot. Cell 6, 1584–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kafsack, B.F. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ke, H. et al. The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J. Biol. Chem. 289, 34827–34837 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. MacRae, J.I. et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 11, 67 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hliscs, M. et al. Organization and function of an actin cytoskeleton in Plasmodium falciparum gametocytes. Cell. Microbiol. 17, 207–225 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Tibúrcio, M. et al. Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malar. J. 14, 334 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cabrera, M. & Cui, L. In vitro activities of primaquine-schizonticide combinations on asexual blood stages and gametocytes of Plasmodium falciparum. Antimicrob. Agents Chemother. 59, 7650–7656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carter, R., Ranford-Cartwright, L.C. & Alano, P. In Protocols in Molecular Parasitology (Totowa, New Jersey: Humana Press Inc., 1993).

  43. Brancucci, N.M.B., Goldowitz, I., Buchholz, K., Werling, K. & Marti, M. An assay to probe Plasmodium falciparum growth, transmission stage formation and early gametocyte development. Nat. Protoc. 10, 1131–1142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eksi, S., Suri, A. & Williamson, K.C. Sex- and stage-specific reporter gene expression in Plasmodium falciparum. Mol. Biochem. Parasitol. 160, 148–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nilsen, A. et al. Quinolone-3-Diarylethers: a new class of drugs for a new era of malaria eradication. Sci. Transl. Med. 20, 5 (2013).

    Google Scholar 

  46. Phillips, M.A. et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med. 7, 7 (2015).

    Article  CAS  Google Scholar 

  47. Trager, W. & Jensen, J.B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976).

    Article  CAS  PubMed  Google Scholar 

  48. Lambros, C. & Vanderberg, J.P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol. 65, 418–420 (1979).

    Article  CAS  PubMed  Google Scholar 

  49. Duffy, S. & Avery, V.M. Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening. Am. J. Trop. Med. Hyg. 86, 84–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, J., Chung, T.D.Y. & Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 4, 67–73 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank and acknowledge the Australian Red Cross Blood Bank for the provision of fresh red blood cells, without which this research could not have been performed. We thank Medicines for Malaria Venture (MMV) for the supply of the MMV Malaria Box. This work was supported by the Australian Research Council (LP120200557 to V.M.A.) and MMV.

Author information

Authors and Affiliations

Authors

Contributions

S.D. conceived, developed and performed the majority of the experimental research involved in optimizing this protocol. S.D. contributed significantly to troubleshooting and undertook the studies using the product of the protocol. S.D. wrote the manuscript and revisions. J.P.H. contributed to writing of the first draft and revision of the final manuscript, and assisted with troubleshooting the protocol. S.L. contributed to the final manuscript, provided technical assistance during the development and optimization of the induction protocol and formatted images. S.L. also designed Figure 2. V.M.A. supervised the drug discovery program, provided guidance and contributed to the interpretation of data and writing of the manuscript.

Corresponding author

Correspondence to Vicky M Avery.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duffy, S., Loganathan, S., Holleran, J. et al. Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nat Protoc 11, 976–992 (2016). https://doi.org/10.1038/nprot.2016.056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.056

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing