Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction

Abstract

Plants characteristically alternate between haploid gametophytic and diploid sporophytic stages. Meiosis and fertilization respectively initiate these two different ontogenies1. Genes triggering ectopic embryo development on vegetative sporophytic tissues are well described2,3; however, a genetic control of embryo development from gametophytic tissues remains elusive. Here, in the moss Physcomitrella patens we show that ectopic overexpression of the homeobox gene BELL1 induces embryo formation and subsequently reproductive diploid sporophytes from specific gametophytic cells without fertilization. In line with this, BELL1 loss-of-function mutants have a wild-type phenotype, except that their egg cells are bigger and unable to form embryos. Our results identify BELL1 as a master regulator for the gametophyte-to-sporophyte transition in P. patens and provide mechanistic insights into the evolution of embryos that can generate multicellular diploid sporophytes. This developmental innovation facilitated the colonization of land by plants about 500 million years ago4 and thus shaped our current ecosystems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein accumulation pattern of PpBELL1–GUS and PpBELL2–GUS during archegonia development and in the embryo determined by histochemical GUS assays.
Figure 2: Development of apogamous sporophytes on PpBELL1oe lines compared with WT sporophytes.
Figure 3: Morphological comparison of WT sporophytes and PpBELL1oe apogamous sporophytes.

References

  1. Friedman, W. E. One genome, two ontogenies. Science 339, 1045–1046 (2013).

    Article  CAS  Google Scholar 

  2. Lotan, T. et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195–1205 (1998).

    Article  CAS  Google Scholar 

  3. Ikeuchi, M. et al. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nature Plants 1, 15089 (2015).

    Article  CAS  Google Scholar 

  4. Bowman, J. L. Walkabout on the long branches of plant evolution. Curr. Opin. Plant Biol. 16, 70–77 (2013).

    Article  Google Scholar 

  5. Wettstein, F. v. Morphologie und Physiologie des Formwechsels der Moose auf genetischer Grundlage I. Zeitschrift Vererbungslehre 33, 1–236 (1924).

    Google Scholar 

  6. Lang, D., Zimmer, A. D., Rensing, S. A. & Reski, R. Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci. 13, 542–549 (2008).

    Article  CAS  Google Scholar 

  7. Kimber, G. & Riley, R. Haploid angiosperms. Bot. Rev. 29, 480–531 (1963).

    Article  Google Scholar 

  8. Schween, G. et al. Large-scale analysis of 73,329 Physcomitrella plants transformed with different gene disruption libraries: production parameters and mutant phenotypes. Plant Biol. 7, 228–237 (2005).

    Article  CAS  Google Scholar 

  9. Winkler, H. Parthenogenesis und Apogamie im Pflanzenreiche. Progressus rei botanicae 2, 293–454 (1908).

    Google Scholar 

  10. Bell, P. R. Apospory and apogamy: implications for understanding the plant life cycle. Int. J. Plant Sci. 153, 123–136 (1992).

    Article  Google Scholar 

  11. Kawashima, T. & Berger, F. Epigenetic reprogramming in plant sexual reproduction. Nature Rev. Genet. 15, 613–624 (2014).

    Article  CAS  Google Scholar 

  12. Katz, A., Oliva, M., Mosquna, A., Hakim, O. & Ohad, N. FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J. 37, 707–719 (2004).

    Article  CAS  Google Scholar 

  13. Mosquna, A. et al. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136, 2433–2444 (2009).

    Article  CAS  Google Scholar 

  14. Okano, Y. et al. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc. Natl Acad. Sci. USA 106, 16321–16326 (2009).

    Article  CAS  Google Scholar 

  15. Sakakibara, K. et al. KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science 339, 1067–1070 (2013).

    Article  CAS  Google Scholar 

  16. Lee, J.-H., Lin, H., Joo, S. & Goodenough, U. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133, 829–840 (2008).

    Article  CAS  Google Scholar 

  17. Bellaoui, M. et al. The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell 13, 2455–2470 (2001).

    Article  CAS  Google Scholar 

  18. Dolan, L. Plant evolution: TALES of development. Cell 133, 771–773 (2008).

    Article  CAS  Google Scholar 

  19. Reiser, L. et al. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83, 735–742 (1995).

    Article  CAS  Google Scholar 

  20. Rutjens, B. et al. Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J. 58, 641–654 (2009).

    Article  CAS  Google Scholar 

  21. Bencivenga, S., Simonini, S., Benková, E. & Colombo, L. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24, 2886–2897 (2012).

    Article  CAS  Google Scholar 

  22. Zimmer, A. D. et al. Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 14, 498 (2013).

    Article  CAS  Google Scholar 

  23. Frank, M. H. & Scanlon, M. J. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs. Mol. Biol. Evol. 32, 355–367 (2015).

    Article  CAS  Google Scholar 

  24. Widiez, T. et al. The chromatin landscape of the moss Physcomitrella patens and its dynamics during development and drought stress. Plant J. 79, 67–81 (2014).

    Article  CAS  Google Scholar 

  25. Holferty, G. M. The archegonium of Mnium cuspidatum. Bot. Gaz. 37, 106–126 (1904).

    Article  Google Scholar 

  26. Harrison, C. J., Roeder, A. H. K., Meyerowitz, E. M. & Langdale, J. A. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Curr. Biol. 19, 461–471 (2009).

    Article  CAS  Google Scholar 

  27. Schween, G., Gorr, G., Hohe, A. & Reski, R. Unique tissue-specific cell cycle in Physcomitrella. Plant Biol. 5, 50–58 (2003).

    Article  Google Scholar 

  28. Kingham, K. I., Duckett, J. G., Glyn, M. C. P. & Leitch, A. R. Nuclear differentiation in the filamentous caulonema of the moss Funaria hygrometrica. New Phytol. 131, 543–556 (1995).

    Article  Google Scholar 

  29. Budke, J. M., Goffinet, B. & Jones, C. S. Dehydration protection provided by a maternal cuticle improves offspring fitness in the moss Funaria hygrometrica. Ann. Bot. 111, 781–789 (2013).

    Article  CAS  Google Scholar 

  30. Mukherjee, K., Brocchieri, L. & Burglin, T. R. A comprehensive classification and evolutionary analysis of plant Homeobox genes. Mol. Biol. Evol. 26, 2775–2794 (2009).

    Article  CAS  Google Scholar 

  31. Furumizu, C., Alvarez, J. P., Sakakibara, K. & Bowman, J. L. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet. 11, e1004980 (2015).

    Article  Google Scholar 

  32. Ranganath, R. M. Developmental switches that hold the key to a revolution in crop biotechnology. Nature Rev. Genet. 12, 224 (2011).

    Article  CAS  Google Scholar 

  33. Spillane, C., Curtis, M. D. & Grossniklaus, U. Apomixis technology development—virgin births in farmers’ fields? Nature Biotechnol. 22, 687–691 (2004).

    Article  CAS  Google Scholar 

  34. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

    Article  Google Scholar 

  35. Reski, R. & Abel, W. O. Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165, 354–358 (1985).

    Google Scholar 

  36. Egener, T. et al. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol. 2, 6 (2002).

  37. Frank, W., Decker, E. L. & Reski, R. Molecular tools to study Physcomitrella patens. Plant Biol. 7, 220–227 (2005).

    Google Scholar 

  38. Hohe, A., Rensing, S. A., Mildner, M., Lang, D. & Reski, R. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol. 4, 595–602 (2002).

    Article  Google Scholar 

  39. Kamisugi, Y., Cuming, A. C. & Cove, D. J. Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic Acids Res. 33, e173 (2005).

    Article  Google Scholar 

  40. Büttner-Mainik, A. et al. Production of biologically active recombinant human factor H in Physcomitrella: production of recombinant human factor H. Plant Biotechnol. J. 9, 373–383 (2011).

    Article  Google Scholar 

  41. Hohe, A. et al. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr. Genet. 44, 339–347 (2004).

    Article  Google Scholar 

  42. Bierfreund, N. M., Tintelnot, S., Reski, R. & Decker, E. L. Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens. J. Plant Physiol. 161, 823–835 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Berman, P. Beyer, M. Lawton and G. Igloi for helpful comments on drafts of the manuscript, N. van Gessel for bioinformatic support, A. K. Prowse for proofreading and A. Novakovic for technical assistance. This work was supported by funds from the German-Israeli Foundation for Scientific Research and Development (GIF I-832-130.12/2004 and I-1008-154.13-2008 to N.O. and R.R.) and by the Excellence Initiative of the German Federal and State Governments (EXC294 to R.R.). I.P. was supported in part by a matching Tel-Aviv University Deans doctoral fellowship and the Manna foundation.

Author information

Authors and Affiliations

Authors

Contributions

N.A.H. generated and analysed the PpBELL1oe lines and analysed the FIE/BELL1 double knockouts and MKN expression. A.K. generated and I.P. analysed the BELL1 knockouts; N.A.H. analysed sperms and egg cells of the BELL1 knockouts. A.K. generated and I.P., N.A.H. and N.O. analysed the BELL–GUS lines. A.K., N.A.H. and I.P. analysed BELL gene expression. A.K. and N.O. performed the BiFC experiments. N.A.H. performed additional analyses documented in Supplementary Figs 1, 2, 8 and 12. A.K., E.L.D., N.O. and R.R. planned and supervised the study. R.R., N.A.H. and N.O. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Nir Ohad or Ralf Reski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horst, N., Katz, A., Pereman, I. et al. A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nature Plants 2, 15209 (2016). https://doi.org/10.1038/nplants.2015.209

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing