Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct mapping of Li-enabled octahedral tilt ordering and associated strain in nanostructured perovskites

Abstract

Self-assembled nanostructures with periodic phase separation hold great promise for creating two- and three-dimensional superlattices with extraordinary physical properties. Understanding the mechanism(s) driving the formation of such superlattices demands an understanding of their underlying atomic structure. However, the nanoscale structural fluctuations intrinsic to these superlattices pose a new challenge for structure determination methods. Here we develop an optimized atomic-level imaging condition to measure TiO6 octahedral tilt angles, unit-cell-by-unit-cell, in perovskite-based Li0.5−3xNd0.5+xTiO3, and thereby determine the mathematical formula governing this nanoscale superstructure. We obtain a direct real-space correlation of the octahedral tilt modulation with the superstructure geometry and lattice-parameter variations. This reveals a composition-dependent, self-ordered octahedral superlattice. Amazingly, we observe a reversible annihilation/reconstruction of the octahedral superlattice correlated with the delithiation/lithiation process in this promising Li-ion conductor. This approach to quantify local octahedral tilt and correlate it with strain can be applied to characterize complex octahedral behaviours in other advanced oxide systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping modulated [001] octahedral tilting in Li0.38Nd0.54TiO3 using optimized BF-STEM.
Figure 2: Quantitative fitting of the measured octahedral tilt modulation to determine its mathematical form in Li0.38Nd0.54TiO3.
Figure 3: Correlated maps of lattice spacing and octahedral tilt angle in Li0.38Nd0.54TiO3.
Figure 4: Mapping modulated c+ octahedral tilting in Li0.215Nd0.595TiO3 using optimized BF-STEM.
Figure 5: Li%-dependent relaxation/annihilation and recovery of the ordered-domain pattern in [001]-oriented Li0.38Nd0.54TiO3.

Similar content being viewed by others

References

  1. Koehler, J. S. Attempt to design a strong solid. Phys. Rev. B 2, 547–551 (1970).

    Article  Google Scholar 

  2. Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970).

    Article  CAS  Google Scholar 

  3. Grahn, H. T. Semiconductor Superlattices (World Scientific, 1995).

    Book  Google Scholar 

  4. Rijnders, G. & Blank, D. H. A. Build your own superlattice. Nature 433, 369–370 (2005).

    Article  CAS  Google Scholar 

  5. Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M. & Lowndes, D. H. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395–399 (2005).

    Article  CAS  Google Scholar 

  6. Tenne, D. A. A. et al. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313, 1614–1616 (2006).

    Article  CAS  Google Scholar 

  7. Watanabe, H., Nebel, C. E. & Shikata, S. Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009).

    Article  CAS  Google Scholar 

  8. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature Mater. 13, 168–172 (2014).

    Article  CAS  Google Scholar 

  9. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    Article  CAS  Google Scholar 

  10. Yeo, S. et al. Solid state self-assembly of nanocheckerboards. Appl. Phys. Lett. 89, 233120 (2006).

    Article  Google Scholar 

  11. Guiton, B. S. & Davies, P. K. Nano-chessboard superlattices formed by spontaneous phase separation in oxides. Nature Mater. 6, 586–591 (2007).

    Article  CAS  Google Scholar 

  12. MacManus-Driscoll, J. L. et al. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nature Mater. 7, 314–320 (2008).

    Article  CAS  Google Scholar 

  13. Ni, Y. & Khachaturyan, A. G. From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition. Nature Mater. 8, 410–414 (2009).

    Article  CAS  Google Scholar 

  14. Moshnyaga, V. et al. Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1−x:(MgO)x nanocomposite films. Nature Mater. 2, 247–252 (2003).

    Article  CAS  Google Scholar 

  15. Zheng, H. et al. Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  CAS  Google Scholar 

  16. Zheng, H. M. et al. Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747–2752 (2006).

    Article  CAS  Google Scholar 

  17. Zhang, C. L. et al. Magnetic nanocheckerboards with tunable sizes in the Mn-doped CoFe2O4 spinel. Appl. Phys. Lett. 91, 233110 (2007).

    Article  Google Scholar 

  18. Robertson, A. D., Garcia Martin, S., Coats, A. & West, A. R. Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5−3xRE0.5+xTiO3 : RE = La, Nd. J. Mater. Chem. 5, 1405–1412 (1995).

    Article  CAS  Google Scholar 

  19. Garcia-Martin, S., Garcia-Alvarado, F., Robertson, A. D., West, A. R. & Alario-Franco, M. A. Microstructural study of the Li+ ion substituted perovskites Li0.5−3xNd0.5+xTiO3 . J. Solid State Chem. 128, 97–101 (1997).

    Article  CAS  Google Scholar 

  20. Withers, R. L. et al. Chessboard/diamond nanostructures and the A-site deficient, Li1/2−3xNd1/2+xTiO3, defect perovskite solid solution. Chem. Mater. 25, 190 − 201 (2013).

    Article  Google Scholar 

  21. Guiton, B. & Davies, P. K. Spontaneous compositional nanopatterning in Li-containing perovskite oxides. J. Am. Chem. Soc. 130, 17168–17173 (2008).

    Article  CAS  Google Scholar 

  22. Lu, J. B. et al. Phase separation, cation ordering and nano-structural complexities in Nd2/3−xLi3xTiO3 with x = 0.14. J. Solid State Chem. 181, 3194–3199 (2008).

    Article  CAS  Google Scholar 

  23. Abakumov, A. M. et al. Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3−xTiO3 perovskites. Chem. Mater. 25, 2670–2683 (2013).

    Article  CAS  Google Scholar 

  24. Erni, R. et al. Nanoscale phase separation in perovskites revisited. Nature Mater. 13, 216–217 (2014).

    Article  CAS  Google Scholar 

  25. Guiton, B. S. & Davies, P. K. Nanoscale phase separation in perovskites revisited. Nature Mater. 13, 217–218 (2014).

    Article  Google Scholar 

  26. Azough, F., Kepaptsoglou, D. M., Ramasse, Q. M., Schaffer, B. & Freer, R. On the origin of nanochessboard super-lattices in A-site-deficient Ca-stabilized Nd2/3TiO3 . Chem. Mater. 27, 497–507 (2015).

    Article  CAS  Google Scholar 

  27. Spence, J. C. H. High Resolution Electron Microscopy 4th edn (Oxford Univ. Press, 2013).

    Book  Google Scholar 

  28. Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).

    Article  CAS  Google Scholar 

  29. Jia, C. L. et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009).

    Article  Google Scholar 

  30. Borisevich, A. Y. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010).

    Article  CAS  Google Scholar 

  31. Chisholm, M. F., Luo, W., Oxley, M. P., Pantelides, S. T. & Lee, H. N. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010).

    Article  Google Scholar 

  32. Findlay, S. D. et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (2009).

    Article  Google Scholar 

  33. Aso, R., Kan, D., Shimakawa, Y. & Kurata, H. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 3, 2214 (2013).

    Article  Google Scholar 

  34. Ohtsuka, M., Yamazaki, T., Kotaka, Y., Hashimoto, I. & Watanabe, K. Imaging of light and heavy atomic columns by spherical aberration corrected middle-angle bright-field STEM. Ultramicroscopy 120, 48–55 (2012).

    Article  CAS  Google Scholar 

  35. Findlay, S. D., Kohno, Y., Cardamone, L. A., Ikuhara, Y. & Shibata, N. Enhanced light element imaging in atomic resolution scanning transmission electron microscopy. Ultramicroscopy 136, 31–41 (2014).

    Article  CAS  Google Scholar 

  36. Dwyer, C. Simulation of scanning transmission electron microscope images on desktop computers. Ultramicroscopy 110, 195–198 (2010).

    Article  CAS  Google Scholar 

  37. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  38. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  39. King, G., García-Martín, S. & Woodward, P. M. Octahedral tilt twinning and compositional modulation in NaLaMgWO6 . Acta Crystallogr. B 65, 676–683 (2009).

    Article  CAS  Google Scholar 

  40. García-Martín, S., King, G., Urones-Garrote, E., Néner, G. & Woodward, P. M. Spontaneous superlattice formation in the doubly ordered perovskite KLaMnWO6 . Chem. Mater. 23, 163–170 (2011).

    Article  Google Scholar 

  41. García-Martín, S., King, G., Nénert, G., Ritter, C. & Woodward, P. M. The incommensurately modulated structures of the perovskites NaCeMnWO6 and NaPrMnWO6 . Inorg. Chem. 51, 4007–4014 (2012).

    Article  Google Scholar 

  42. Woodward, P. M. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B 53, 32–43 (1997).

    Article  Google Scholar 

  43. Reaney, I. M., Colla, E. L. & Setter, N. Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984–3990 (1994).

    Article  CAS  Google Scholar 

  44. Woodward, P. M. Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr. B 53, 44–66 (1997).

    Article  Google Scholar 

  45. García-Martín, S. & Alario-Franco, M. Á. Modulated structure of La1/3−xLi3xNbO30 ≤ x ≤ 0.06 perovskite-related materials. J. Solid State Chem. 148, 93–99 (1999).

    Article  Google Scholar 

  46. Rondinelli, J. M. & Spaldin, N. A. Structure and properties of functional oxide thin films: Insights from electronic-structure calculations. Adv. Mater. 23, 3363–3381 (2011).

    Article  CAS  Google Scholar 

  47. Howard, C. J. & Stokes, H. T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B 54, 782–789 (1998).

    Article  Google Scholar 

  48. Knapp, M. C. & Woodward, P. M. A-site cation ordering in AABB′O6 perovskites. J. Solid State Chem. 179, 1076–1085 (2006).

    Article  CAS  Google Scholar 

  49. García-Martín, S., Rojo, J. M., Tsukamoto, H., Morán, E. & Alario-Franco, M. Á. Lithium-ion conductivity in the novel La1/3−xLi3xNbO3 solid solution with perovskite-related structure. Solid State Ion. 116, 11–18 (1999).

    Article  Google Scholar 

  50. Gao, X. et al. Lithium atom and A-site vacancy distributions in lanthanum lithium titanate. Chem. Mater. 25, 1607–1614 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) grants DP110104734 and DP150104483 and a Monash University IDR grant. The FEI Titan3 80-300 S/TEM at Monash Centre for Electron Microscopy was funded by the ARC Grant LE0454166. The authors are grateful to M. Weyland for optimizing the Titan microscope and to L. Noren for synthesizing the materials. R.L.W. acknowledges support from ARC grant number DP110100618. C.D. acknowledges the support of the Ernst Ruska Centre at Forschungszentrum Juelich.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and J.E. designed the experiments. Y.Z. developed the optimized BF-STEM imaging mode, performed the BF-STEM measurements, and analysed the data. R.L.W. developed mathematics to describe the modulated structure with higher-order harmonics and carried out bond-valence sum calculations. L.B. prepared TEM samples and initiated the TEM/STEM observations. Y.Z. and C.D. performed multislice image simulations. J.E. supervised the project. Y.Z. and J.E. wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Ye Zhu or Joanne Etheridge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 10964 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Withers, R., Bourgeois, L. et al. Direct mapping of Li-enabled octahedral tilt ordering and associated strain in nanostructured perovskites. Nature Mater 14, 1142–1149 (2015). https://doi.org/10.1038/nmat4390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing