Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25

Abstract

Interleukin 17 (IL-17) is important in infection and autoimmunity; how it signals remains poorly understood. In this study, we identified the ubiquitin-specific protease USP25 as a negative regulator of IL-17-mediated signaling and inflammation. Overexpression of USP25 inhibited IL-17-triggered signaling, whereas USP25 deficiency resulted in more phosphorylation of the inhibitor IκBα and kinase Jnk and higher expression of chemokines and cytokines, as well as a prolonged half-life for chemokine CXCL1–encoding mRNA after treatment with IL-17. Consistent with that, Usp25−/− mice showed greater sensitivity to IL-17-dependent inflammation and autoimmunity in vivo. Mechanistically, stimulation with IL-17 induced the association of USP25 with the adaptors TRAF5 and TRAF6, and USP25 induced removal of Lys63-linked ubiquitination in TRAF5 and TRAF6 mediated by the adaptor Act1. Thus, our results demonstrate that USP25 is a deubiquitinating enzyme (DUB) that negatively regulates IL-17-triggered signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of USP25 inhibits IL-17-triggered signaling.
Figure 2: USP25 deficiency enhances the IL-17-induced expression of proinflammatory cytokines.
Figure 3: IL-17-induced pulmonary inflammation is enhanced in the absence of USP25.
Figure 4: USP25 deficiency exacerbates the severity of EAE.
Figure 5: USP25 and its DUB activity are required for restriction of IL-17 signaling.
Figure 6: USP25 negatively regulates the IL-17-mediated stabilization of chemokine-encoding mRNA.
Figure 7: IL-17 induces the USP25-TRAF5 and USP25-TRAF6 associations.
Figure 8: USP25 deubiquitinates Act1-mediated K63-linked ubiquitination of TRAF6 and TRAF5.

Similar content being viewed by others

References

  1. Iwakura, Y., Ishigame, H., Saijo, S. & Nakae, S. Functional specialization of interleukin-17 family members. Immunity 34, 149–162 (2011).

    CAS  PubMed  Google Scholar 

  2. Yang, X.O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kagami, S., Rizzo, H.L., Kurtz, S.E., Miller, L.S. & Blauvelt, A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J. Immunol. 185, 5453–5462 (2010).

    CAS  PubMed  Google Scholar 

  4. Gaffen, S.L. Recent advances in the IL-17 cytokine family. Curr. Opin. Immunol. 23, 613–619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong, C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat. Rev. Immunol. 6, 329–333 (2006).

    CAS  PubMed  Google Scholar 

  7. Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  PubMed  Google Scholar 

  8. Cua, D.J. & Tato, C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    CAS  PubMed  Google Scholar 

  9. Chang, S.H. & Dong, C. Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell. Signal. 23, 1069–1075 (2011).

    CAS  PubMed  Google Scholar 

  10. Hartupee, J., Liu, C., Novotny, M., Li, X. & Hamilton, T. IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol. 179, 4135–4141 (2007).

    CAS  PubMed  Google Scholar 

  11. Wright, J.F. et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol. 181, 2799–2805 (2008).

    CAS  PubMed  Google Scholar 

  12. Hu, Y. et al. IL-17RC is required for IL-17A- and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 184, 4307–4316 (2010).

    CAS  PubMed  Google Scholar 

  13. Chang, S.H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    CAS  PubMed  Google Scholar 

  14. Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247–256 (2007).

    CAS  PubMed  Google Scholar 

  15. Liu, C. et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci. Signal. 2, ra63 (2009).

    PubMed  PubMed Central  Google Scholar 

  16. Bulek, K. et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat. Immunol. 12, 844–852 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reyes-Turcu, F.E., Ventii, K.H. & Wilkinson, K.D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363–397 (2009).

    CAS  PubMed  Google Scholar 

  18. Lin, S.C. et al. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J. Mol. Biol. 376, 526–540 (2008).

    CAS  PubMed  Google Scholar 

  19. Li, S. et al. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J. Biol. Chem. 285, 4291–4297 (2010).

    CAS  PubMed  Google Scholar 

  20. Valero, R. et al. USP25, a novel gene encoding a deubiquitinating enzyme, is located in the gene-poor region 21q11.2. Genomics 62, 395–405 (1999).

    CAS  PubMed  Google Scholar 

  21. Chang, S.H. & Dong, C. IL-17F: regulation, signaling and function in inflammation. Cytokine 46, 7–11 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, X. et al. Transcription of Il17 and Il17f is controlled by conserved noncoding sequence 2. Immunity 36, 23–31 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Chang, S.H. et al. Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E. Immunity 35, 611–621 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Denuc, A., Bosch-Comas, A., Gonzalez-Duarte, R. & Marfany, G. The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLoS ONE 4, e5571 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Sun, D. et al. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat. Immunol. 12, 853–860 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. May, M.J. IL-17R signaling: new players get in on the Act1. Nat. Immunol. 12, 813–815 (2011).

    CAS  PubMed  Google Scholar 

  27. Lamothe, B. et al. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. J. Biol. Chem. 282, 4102–4112 (2007).

    CAS  PubMed  Google Scholar 

  28. Shi, P. et al. Persistent stimulation with interleukin-17 desensitizes cells through SCFβ-TrCP-mediated degradation of Act1. Sci. Signal. 4, ra73 (2011).

    PubMed  Google Scholar 

  29. Skaug, B., Jiang, X. & Chen, Z.J. The role of ubiquitin in NF-κB regulatory pathways. Annu. Rev. Biochem. 78, 769–796 (2009).

    CAS  PubMed  Google Scholar 

  30. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    CAS  PubMed  Google Scholar 

  31. Ea, C.K., Sun, L., Inoue, J. & Chen, Z.J. TIFA activates IκB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proc. Natl. Acad. Sci. USA 101, 15318–15323 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mao, A.P. et al. Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-β (IFN-β) and cellular antiviral response. J. Biol. Chem. 285, 9470–9476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    CAS  PubMed  Google Scholar 

  34. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    CAS  PubMed  Google Scholar 

  35. Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

    CAS  PubMed  Google Scholar 

  36. Xia, Z.P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan, Y. et al. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor α- and interleukin-1β-induced IKK/NF-κB and JNK/AP-1 activation. J. Biol. Chem. 285, 5347–5360 (2010).

    CAS  PubMed  Google Scholar 

  38. Xu, M., Skaug, B., Zeng, W. & Chen, Z.J. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFα and IL-1β. Mol. Cell 36, 302–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gack, M.U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

    CAS  PubMed  Google Scholar 

  41. Zhu, S. et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J. Exp. Med. 207, 2647–2662 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. He, J.Q., Oganesyan, G., Saha, S.K., Zarnegar, B. & Cheng, G. TRAF3 and its biological function. Adv. Exp. Med. Biol. 597, 48–59 (2007).

    PubMed  Google Scholar 

  43. Maezawa, Y. et al. Involvement of TNF receptor-associated factor 6 in IL-25 receptor signaling. J. Immunol. 176, 1013–1018 (2006).

    CAS  PubMed  Google Scholar 

  44. Angkasekwinai, P. et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bot, J. et al. Culturing mouse peritoneal mesothelial cells. Pathol. Res. Pract. 199, 341–344 (2003).

    PubMed  Google Scholar 

  46. Wang, J. et al. Pneumocystis carinii activates the NF-κB signaling pathway in alveolar epithelial cells. Infect. Immun. 73, 2766–2777 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bosch-Comas, A., Lindsten, K., Gonzalez-Duarte, R., Masucci, M.G. & Marfany, G. The ubiquitin-specific protease USP25 interacts with three sarcomeric proteins. Cell. Mol. Life Sci. 63, 723–734 (2006).

    CAS  PubMed  Google Scholar 

  48. Zhong, B. et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30, 397–407 (2009).

    CAS  PubMed  Google Scholar 

  49. Zhong, B. et al. The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. J. Immunol. 184, 6249–6255 (2010).

    CAS  PubMed  Google Scholar 

  50. Li, Q. et al. Tripartite motif 8 (TRIM8) modulates TNFα- and IL-1β-triggered NF-κB activation by targeting TAK1 for K63-linked polyubiquitination. Proc. Natl. Acad. Sci. USA 108, 19341–19346 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Marfany (University of Barcelona) for rabbit anti-USP25; T. Hamilton (Cleveland Clinic) for Tet-Off HeLa cells and pTRE2-KCΔ4 plasmid; Z. Chen (UT Southwestern Medical Center) for hemagglutinin-tagged ubiquitin (K48 only and K63 only) and suggestions; H.-B. Shu (Wuhan University) for mouse anti-TRAF6, plasmids encoding TRAF1–TRAF6 and suggestions; and members of Dong laboratory for technical help. Supported by the US National Institutes of Health, the University of Texas MD Anderson Cancer Center, the CFP foundation of MD Anderson Cancer Center (B.Z.) and the Leukemia and Lymphoma Society (C.D.).

Author information

Authors and Affiliations

Authors

Contributions

B.Z., Xik.L. and C.D. designed the project; Xik.L. did the IL-17-induced peritoneal inflammation experiments; B.Z., X.W., Xin.L. and A.W. did the biochemical experiments and EAE analysis; B.Z. and S.H.C. prepared MEFs and did the IL-17 induced lung-inflammation experiments; B.Z. and J.M.R. prepared lung epithelial cells; and B.Z. and C.D. wrote and revised the manuscript.

Corresponding author

Correspondence to Chen Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 3602 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, B., Liu, X., Wang, X. et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol 13, 1110–1117 (2012). https://doi.org/10.1038/ni.2427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing