Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages

Abstract

Phagocytosis is a pivotal process by which macrophages eliminate microorganisms after recognition by pathogen sensors. Here we unexpectedly found that the self ligand and cell surface receptor SLAM functioned not only as a costimulatory molecule but also as a microbial sensor that controlled the killing of Gram-negative bacteria by macrophages. SLAM regulated activity of the NADPH oxidase NOX2 complex and phagolysosomal maturation after entering the phagosome, following interaction with the bacterial outer membrane proteins OmpC and OmpF. SLAM recruited a complex containing the intracellular class III phosphatidylinositol kinase Vps34, its regulatory protein kinase Vps15 and the autophagy-associated molecule beclin-1 to the phagosome, which was responsible for inducing the accumulation of phosphatidylinositol-3-phosphate, a regulator of both NOX2 function and phagosomal or endosomal fusion. Thus, SLAM connects the Gram-negative bacterial phagosome to ubiquitous cellular machinery responsible for the control of bacterial killing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SLAM controls in vivo and in vitro killing of Gram-negative bacteria by mouse macrophages.
Figure 2: Defective NOX2 activity in primary macrophages derived from SLAM-deficient mice.
Figure 3: Impaired phagolysosomal maturation in Slamf1−/− macrophages.
Figure 4: Delay in early phagosomal maturation in Slamf1−/− macrophages.
Figure 5: SLAM enters the E. coli–containing phagosome.
Figure 6: SLAM recognizes E. coli and S. typhimurium Sseb but not S. aureus.
Figure 7: PtdIns(3)P production in phagosomes of primary macrophages is controlled by SLAM.
Figure 8: SLAM recruits the intracellular Vps34–Vps15–beclin-1 complex to the phagosome.

Similar content being viewed by others

References

  1. Stuart, L.M. & Ezekowitz, R.A. Phagocytosis and comparative innate immunity: learning on the fly. Nat. Rev. Immunol. 8, 131–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Calpe, S. et al. The SLAM and SAP gene families control innate and adaptive immune responses. Adv. Immunol. 97, 177–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Rethi, B. et al. SLAM/SLAM interactions inhibit CD40-induced production of inflammatory cytokines in monocyte-derived dendritic cells. Blood 107, 2821–2829 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Malaviya, R., Gao, Z., Thankavel, K., van der Merwe, P.A. & Abraham, S.N. The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc. Natl. Acad. Sci. USA 96, 8110–8115 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, N. et al. The cell surface receptor SLAM controls T cell and macrophage functions. J. Exp. Med. 199, 1255–1264 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Backer, J.M. The regulation and function of class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Laroux, F.S., Romero, X., Wetzler, L., Engel, P. & Terhorst, C. Cutting edge: MyD88 controls phagocyte NADPH oxidase function and killing of gram-negative bacteria. J. Immunol. 175, 5596–5600 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Segal, A.W. How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197–223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Miksa, M., Komura, H., Wu, R., Shah, K.G. & Wang, P. A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J. Immunol. Methods 342, 71–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blander, J.M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nat. Immunol. 7, 1029–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Trivedi, V., Zhang, S.C., Stockinger, W. & Nohturfft, A.A. Cell-free scintillation proximity assay for studies on lysosome-to-phagosome targeting. Sci. STKE 2007, l3 (2007).

    Google Scholar 

  16. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kitano, M., Nakaya, M., Nakamura, T., Nagata, S. & Matsuda, M. Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature 453, 241–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Rohde, K., Yates, R.M., Purdy, G.E. & Russell, D.G. Mycobacterium tuberculosis and the environment within the phagosome. Immunol. Rev. 219, 37–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Howie, D. et al. Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation. Blood 99, 957–965 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Yates, R.M. & Russell, D.G. Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity 23, 409–417 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Basle, A., Rummel, G., Storici, P., Rosenbusch, J.P. & Schirmer, T. Crystal structure of osmoporin OmpC from E. coli at 2.0 A. J. Mol. Biol. 362, 933–942 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Yeung, T., Ozdamar, B., Paroutis, P. & Grinstein, S. Lipid metabolism and dynamics during phagocytosis. Curr. Opin. Cell Biol. 18, 429–437 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Vieira, O.V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–26 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bissonnette, S.A. et al. Phosphatidylinositol 3-phosphate-dependent and -independent functions of p40phox in activation of the neutrophil NADPH oxidase. J. Biol. Chem. 283, 2108–2119 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Lawe, D.C. et al. Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. J. Biol. Chem. 277, 8611–8617 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Psachoulia, E. & Sansom, M.S.P. PX- and FYVE-mediated interactions with membranes: simulation studies. Biochemistry 48, 5090–5095 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Yan, Y. & Backer, J.M. Regulation of class III (Vps34) PI3Ks. Biochem. Soc. Trans. 35, 239–241 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Kinchen, J.M. et al. A pathway for phagosome maturation during engulfment of apoptotic cells. Nat. Cell Biol. 10, 556–566 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Juhasz, G. et al. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181, 655–666 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lindmo, K. et al. The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates. Autophagy 4, 500–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Matsunaga, K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11, 385–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11, 468–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basle, A., Rummel, G., Storici, P., Rosenbusch, J.P. & Schirmer, T. Crystal structure of osmoporin OmpC from E. coli at 2.0 A. J. Mol. Biol. 362, 933–942 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida, T., Qin, L., Egger, L.A. & Inouye, M. Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J. Biol. Chem. 281, 17114–17123 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Landers, C.J. et al. Selected loss of tolerance evidenced by Crohn's disease-associated immune responses to auto- and microbial antigens. Gastroenterology 123, 689–699 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Glick, D., Barth, S. & Macleod, K.F. Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3–12 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Virgin, H.W. & Levine, B. Autophagy genes in immunity. Nat. Immunol. 10, 461–470 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Desjardins, M., Nzala, N.N., Corsini, R. & Rondeau, C. Maturation of phagosomes is accompanied by changes in their fusion properties and size-selective acquisition of solute materials from endosomes. J. Cell Sci. 110, 2303–2314 (1997).

    CAS  PubMed  Google Scholar 

  39. Sanjuan, M.A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, J. et al. Activation of antibacterial autophagy by NADPH oxidases. Proc. Natl. Acad. Sci. USA 106, 6226–6231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beutler, B. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Annu. Rev. Immunol. 227, 248–263 (2009).

    Article  CAS  Google Scholar 

  42. Stockinger, W. et al. Differential requirements for actin polymerization, calmodulin, and Ca2+ define distinct stages of lysosome/phagosome targeting. Mol. Biol. Cell. 17, E05–E12 (2006).

    Article  Google Scholar 

  43. Stockinger, W., Castoreno, A.B., Wang, Y., Pagnon, J.C. & Nohturfft, A. Real-time analysis of endosomal lipid transport by live cell scintillation proximity assay. J. Lipid Res. 45, 2151–2158 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Serunian, L.A., Auger, K.R. & Cantley, L.C. Identification and quantification of polyphosphoinositides produced in response to platelet-derived growth factor stimulation. Methods Enzymol. 198, 78–87 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Remold, P. Klebba and members of the Terhorst lab for critical review of the manuscript; S. Laroux for help with initial oxidative burst experiments; A. Nohturft, M. Yaffe, P. Klebba and G. Pier for discussions; B. McCormick (University of Massachusetts) for E. coli F18; C. Nagler (University of Chicago) and P. Klemm (Technical University of Denmark) for eGFP-expressing bacteria; H. Nikaido (University of California Berkeley), P. Klebba (University of Oklahoma) and G. Pier (Harvard Medical School) for mutant strains of E. coli and S. aureus; M. Yaffe (Massachusetts Institute of Technology) for the p40-eGFP construct; L. Cantley (Harvard Medical School) for Vps34-Myc; R. Tsien (University of California San Diego) for the mCherry construct; J. Backer (Albert Einstein College of Medicine) for the Vps34-Vps15-V5 construct; P. Hawkins (Babraham Institute) for p40phox-deficient mice; and S. Targan (Cedars-Sinai) for the highly purified OmpC preparation. Supported by the US National Institutes of Health (AI-15066 to C.T., and DK-068181 and DK-003506-20 to H.C.R.) and the Crohn's and Colitis Foundation of America (S.B. and X.R.).

Author information

Authors and Affiliations

Authors

Contributions

S.B.B., X.R. and C.T. designed the experiments, analyzed the data and wrote the manuscript; S.B.B. and X.R. did all of the experiments except for the in vivo killing experiments and some of the Jurkat recognition and immunoprecipitation experiments; C.M. did many of the immunoprecipitation experiments; G.W. helped with the confocal microscopy and Jurkat recognition experiments; W.A.F. initiated the killing experiments, was involved in the oxidative burst experiments and set up the Jurkat recognition experiments; G.L. set up the immunoprecipitation; E.C. did some of the Jurkat recognition experiments; M.K. did the restriction fragment length polymorphism analysis and helped make some of the stable transfectants; L.R. did the HPLC analysis; N.W. produced the Slamf1−/− mice; M.B. provided the MHC class II–eGFP mice and helped with analysis of the Slamf1−/− MHC class II–eGFP experiments; J.R.R. helped with production of the SLAM-mCherry construct; H.C.R. helped with the design, data acquisition and interpretation of the confocal microscopy; and C.T. supervised the study.

Corresponding authors

Correspondence to Scott B Berger or Cox Terhorst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 416 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, S., Romero, X., Ma, C. et al. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol 11, 920–927 (2010). https://doi.org/10.1038/ni.1931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing