Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dual continental rift systems generated by plume–lithosphere interaction

Abstract

Although many continental rifts and passive margins are magmatic, some are not1. This observation prompted endmember views of the mechanisms driving continental rifting, where magma-rich or active rifts would be caused by deep mantle plumes2, whereas magma-poor or passive rifts would result from the stretching of the lithosphere under far-field plate forces3. The Central East African Rift provides a unique setting to investigate the mechanisms of continental rifting because it juxtaposes a magma-rich (eastern) branch and magma-poor (western) branch on either side of the 250-km-thick Tanzanian craton4. Here we investigate this contrasted behavior using a high-resolution rheologically consistent three-dimensional thermo-mechanical numerical model. The model reproduces the rise of a mantle plume beneath a craton experiencing tensional far-field stress. In our numerical experiments the plume is deflected by the cratonic keel and preferentially channelled along one of its sides. This leads to the coeval development of magma-rich and magma-poor rifts along opposite craton sides, fed by melt from a single mantle source. Our numerical experiments show strong similarities to the observed evolution of the Central East African Rift, reconcile the passive and active rift models, and demonstrate the possibility of developing both magmatic and amagmatic rifts in identical geotectonic environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geologic and geophysical context.
Figure 2: Reference numerical experiment.
Figure 3: Preferred numerical experiment.
Figure 4: Distribution of plume material and melt in the preferred model.

Similar content being viewed by others

References

  1. Buck, W. R. in The Treatise on Geophysics Vol. 6 (ed Watts, A. B.) (Elsevier, 2007).

    Google Scholar 

  2. Sengör, A. M. C. & Burke, K. Relative timing of rifting and volcanism on Earth and its tectonic implications. Geophys. Res. Lett. 5, 419–421 (1978).

    Article  Google Scholar 

  3. McKenzie, D. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40, 25–32 (1978).

    Article  Google Scholar 

  4. Saria, E., Calais, E., Stamps, D. S., Delvaux, D. & Hartnady, C. J. H. Present-day kinematics of the East African Rift. J. Geophys. Res. 119, 3584–3600 (2014).

    Article  Google Scholar 

  5. Godfrey Fitton, J. Active versus passive continental rifting: Evidence from the West African rift system. Tectonophysics 94, 473–481 (1983).

    Article  Google Scholar 

  6. Foulger, G. R. & Hamilton, W. B. Earth science: Plume hypothesis challenged. Nature 505, 618 (2014).

    Article  Google Scholar 

  7. Whitmarsh, R. B., Manatschal, G. & Minshull, T. A. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413, 150–154 (2001).

    Article  Google Scholar 

  8. Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928 (1999).

    Article  Google Scholar 

  9. Nyblade, A. A., Owens, T. J., Gurrola, H., Ritsema, J. & Langston, C. A. Seismic evidence for a deep upper mantle thermal anomaly beneath east Africa. Geology 28, 599–602 (2000).

    Article  Google Scholar 

  10. Satsukawa, T. et al. Seismic anisotropy of the uppermost mantle beneath the Rio Grande rift: Evidence from Kilbourne Hole peridotite xenoliths, New Mexico. Earth Planet. Sci. Lett. 311, 172–181 (2011).

    Article  Google Scholar 

  11. Calais, E. et al. Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa. Nature 456, 783–787 (2008).

    Article  Google Scholar 

  12. Kendall, J. M., Stuart, G. W., Ebinger, C. J., Bastow, I. D. & Keir, D. Magma-assisted rifting in Ethiopia. Nature 433, 146–148 (2005).

    Article  Google Scholar 

  13. Rooney, T. O., Herzberg, C. & Bastow, I. D. Elevated mantle temperature beneath East Africa. Geology 40, 27–30 (2012).

    Article  Google Scholar 

  14. Ferguson, D. J. et al. Melting during late-stage rifting in Afar is hot and deep. Nature 499, 70–73 (2013).

    Article  Google Scholar 

  15. Burov, E., Guillou-Frottier, L., d’Acremont, E., Le Pourhiet, L. & Cloetingh, S. Plume head–lithosphere interactions near intra-continental plate boundaries. Tectonophysics 434, 15–38 (2007).

    Article  Google Scholar 

  16. Lithgow-Bertelloni, C. & Silver, P. G. Dynamic topography, plate driving forces and the African superswell. Nature 395, 269–272 (1998).

    Article  Google Scholar 

  17. Moucha, R. & Forte, A. M. Changes in African topography driven by mantle convection. Nature Geosci. 4, 707–712 (2011).

    Article  Google Scholar 

  18. Yang, Z. & Chen, W. P. Earthquakes along the East African Rift system: A multiscale, system-wide perspective. J. Geophys. Res. 115, B12309 (2010).

    Article  Google Scholar 

  19. Nyblade, A. A. Heat flow across the East African plateau. Geophys. Res. Lett. 24, 2083–2086 (1997).

    Article  Google Scholar 

  20. Roberts, E. M. et al. Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geosci. 5, 289–294 (2012).

    Article  Google Scholar 

  21. Chesley, J. T., Rudnick, R. L. & Lee, C. T. Re–Os systematics of mantle xenoliths from the East African Rift: Age, structure, and history of the Tanzanian craton. Geochim. Cosmochim. Acta 63, 1203–1217 (1999).

    Article  Google Scholar 

  22. Adams, A., Nyblade, A. & Weeraratne, D. Upper mantle shear wave velocity structure beneath the East African plateau: Evidence for a deep, plateau-wide low velocity anomaly. Geophys. J. Int. 189, 123–142 (2012).

    Article  Google Scholar 

  23. Pik, R., Marty, B. & Hilton, D. R. How many mantle plumes in Africa? The geochemical point of view. Chem. Geol. 226, 100–114 (2006).

    Article  Google Scholar 

  24. Halldórsson, S. A., Hilton, D. R., Scarsi, P., Abebe, T. & Hopp, J. A common mantle plume source beneath the entire East African Rift system revealed by coupled helium-neon systematics. Geophys. Res. Lett. 41, 2304–2311 (2014).

    Article  Google Scholar 

  25. MacDonald, R., Rogers, N. W., Fitton, J. G., Black, S. & Smith, M. Plume–lithosphere interactions in the generation of the basalts of the Kenya Rift, East Africa. J. Petrol. 42, 877–900 (2001).

    Article  Google Scholar 

  26. Gerya, T. V. & Yuen, D. A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83–105 (2007).

    Article  Google Scholar 

  27. Ebinger, C. J. & Sleep, N. H. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395, 788–791 (1998).

    Article  Google Scholar 

  28. Davis, P. M. & Slack, P. D. The uppermost mantle beneath the Kenya dome and relation to melting, rifting and uplift in East Africa. Geophys. Res. Lett. 29, 1117 (2002).

    Article  Google Scholar 

  29. Spath, A., Le Roex, A. P. & Opiyo-Akech, N. Plume-lithosphere interaction and the origin of continental rift-related alkaline volcanism—the Chyulu Hills Volcanic Province, southern Kenya. J. Petrol. 42, 765–787 (2001).

    Article  Google Scholar 

  30. Sleep, N. H., Ebinger, C. J. & Kendall, J. M. Deflection of mantle plume material by cratonic keels. Spec. Publ. Geol. Soc. (Lond.) 199, 135–150 (2002).

    Article  Google Scholar 

  31. Gerya, T. V. Introduction to Numerical Geodynamic Modelling 221–240 (Cambridge Univ. Press, 2010).

    Google Scholar 

Download references

Acknowledgements

This study is co-funded by a US National Science Foundation grant EAR-0538119 to E.C., the Advanced ERC Grant 290864 RHEOLITH to E.B., the INSU-CNRS, a UPMC Invited Professor Grant (T.G.) and an ETH Invited Professor Grant (E.B.). Numerical simulations were performed on the ERC-funded SGI Ulysse cluster of ISTEP.

Author information

Authors and Affiliations

Authors

Contributions

A.K., E.B. and E.C. designed the study. A.K. conducted 3D experiments. E.B. conducted 3D test experiments and designed the conceptual model. E.C. and S.L. provided geophysical and geologic context. T.G. designed the 3D thermo-mechanical code and conducted test experiments. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to A. Koptev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koptev, A., Calais, E., Burov, E. et al. Dual continental rift systems generated by plume–lithosphere interaction. Nature Geosci 8, 388–392 (2015). https://doi.org/10.1038/ngeo2401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing