Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Geodynamics of continental rift initiation and evolution

Abstract

A continental rift is a nascent plate boundary where the lithosphere is thinned by tectonic activity. Some continental rifts undergo extension to the point that they generate a new ocean basin, whereas others can cease activity altogether. However, the mechanisms that determine rift success or failure remain debated. In this Review, we discuss fundamental rift processes, geodynamic forces and their tectonic interactions and identify the mechanisms that lead to the large variety of rifts on Earth. Rifting initiates through multiscale exploitation of inherited weaknesses, generating dynamic spatiotemporal competition, cessation or localization of rift structures. Progressive thinning of the lithosphere prompts continuous changes in the rift system force balance and prevents a steady-state configuration. Successful continent-scale rifts feature an abrupt and roughly tenfold increase in divergence velocity once the lithosphere is sufficiently weakened. Melt generation during mantle plume impingement can weaken the lithosphere by an order of magnitude, aiding the development of successful rifts. However, at failed rifts, the evolving force balance is dominated by lithospheric strengthening, so that tectonic activity ceases before continental rupture is complete. Outstanding future challenges include unravelling where magmatism is a cause or a consequence of rifting, isolating the tipping points that separate successful from failed rifting and deciphering the interaction of rift tectonics with fluid flow during georesource formation and volatile release.

Key points

  • Continental rifting is an intrinsically transient process that thins the lithosphere through distinct successive phases from inception to breakup. The structural evolution is controlled by the competition between geodynamic drivers, resisting factors and weakening processes.

  • Rifting proceeds where lithospheric strength is lowest. Strength minima on a local scale are not necessarily strength minima on a plate scale. Rift deformation can hence jump or switch between weaknesses on multiple scales, subsequently generating competing structures, migration and cessation of tectonic activity.

  • Failed rifts should be considered dormant rather than dead as rift-induced weaknesses can get reactivated even after hundreds of millions of years if the local force balance changes.

  • Lithospheric thinning and magmatism are intimately coupled. If dikes cut through the lithosphere, they efficiently heat and weaken the rift, potentially reducing its resistance by an order of magnitude.

  • Mantle plumes simultaneously enhance the forces driving rifting and reduce lithospheric strength by causing magmatic intrusions. Rifts that experience plume impingement appear to always proceed to sea-floor spreading. However, although mantle plumes can aid continental rifting, they are not a requirement, as some rifts proceeded without flood basalt eruptions.

  • Rift-related elevated heat flow and permeable normal fault networks facilitate geothermal energy generation and the formation of ore deposits. However, rifts also pose considerable hazards ranging from natural earthquake activity and volcanism to large-scale carbon dioxide degassing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Driving forces, resisting factors and weakening processes that accompany rifting.
Fig. 2: Juvenile continental rift structures at the Malawi Rift.
Fig. 3: Lithospheric strength and response to deformation.
Fig. 4: Plume impact on rifting.
Fig. 5: Multiscale rift competition in branched rifts.
Fig. 6: Estimates of driving forces, weakening processes and strengthening mechanisms.

Similar content being viewed by others

References

  1. Poggi, V. et al. Assessing seismic hazard of the East African Rift: a pilot study from GEM and AfricaArray. Bull. Earthq. Eng. 15, 4499–4529 (2017).

    Article  Google Scholar 

  2. Biggs, J. et al. Volcanic activity and hazard in the East African Rift Zone. Nat. Commun. 12, 6881 (2021).

    Article  Google Scholar 

  3. Dewitte, O. et al. Constraining landslide timing in a data-scarce context: from recent to very old processes in the tropical environment of the North Tanganyika-Kivu Rift region. Landslides 18, 161–177 (2021).

    Article  Google Scholar 

  4. Tamburello, G., Pondrelli, S., Chiodini, G. & Rouwet, D. Global-scale control of extensional tectonics on CO2 earth degassing. Nat. Commun. 9, 4608 (2018).

    Article  Google Scholar 

  5. Brune, S., Williams, S. E. & Müller, R. D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 10, 941–946 (2017).

    Article  Google Scholar 

  6. Jolie, E. et al. Geological controls on geothermal resources for power generation. Nat. Rev. Earth Environ. 2, 324–339 (2021).

    Article  Google Scholar 

  7. Leach, D. L. et al. Sediment-hosted lead-zinc deposits in earth history. Econ. Geol. 105, 593–625 (2010).

    Article  Google Scholar 

  8. Wilkinson, J. J. in Treatise on Geochemistry 2nd edn (ed. Turekian, K.) 219–249 (Elsevier, 2013).

  9. Koppers, A. A. P. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).

    Article  Google Scholar 

  10. Rooney, T. O. The Cenozoic magmatism of East-Africa: part I — flood basalts and pulsed magmatism. Lithos 286, 264–301 (2017).

    Article  Google Scholar 

  11. Dèzes, P., Schmid, S. M. & Ziegler, P. A. Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389, 1–33 (2004).

    Article  Google Scholar 

  12. White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. Solid. Earth 94, 7685–7729 (1989).

    Article  Google Scholar 

  13. Rooney, T. O. The Cenozoic magmatism of East Africa: part V — magma sources and processes in the East African Rift. Lithos 360–361, 105296 (2020).

    Article  Google Scholar 

  14. Venzke, E. Global Volcanism Program: volcanoes of the world (v. 5.0.0). Smithsonian Institution https://doi.org/10.5479/si.GVP.VOTW5-2022.5.0 (2022).

  15. Craig, T. J., Jackson, J. A., Priestley, K. & McKenzie, D. Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications. Geophys. J. Int. 185, 403–434 (2011).

    Article  Google Scholar 

  16. Allen, P. A. & Allen, J. R. Basin Analysis: Principles and Application to Petroleum Play Assessment (Wiley, 2013).

  17. Brace, W. F. & Kohlstedt, D. L. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. Solid Earth 85, 6248–6252 (1980).

    Article  Google Scholar 

  18. Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2014).

  19. van Summeren, J., Conrad, C. P. & Lithgow-Bertelloni, C. The importance of slab pull and a global asthenosphere to plate motions. Geochem. Geophys. Geosyst. 13, Q0AK03 (2012).

    Google Scholar 

  20. Bellahsen, N., Faccenna, C., Funiciello, F., Daniel, J. M. & Jolivet, L. Why did Arabia separate from Africa? Insights from 3-D laboratory experiments. Earth Planet. Sci. Lett. 216, 365–381 (2003).

    Article  Google Scholar 

  21. McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D. & Tealeb, A. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int. 155, 126–138 (2003).

    Article  Google Scholar 

  22. Taylor, B., Goodliffe, A. M. & Martinez, F. How continents break up: insights from Papua New Guinea. J. Geophys. Res. Solid Earth 104, 7497–7512 (1999).

    Article  Google Scholar 

  23. Petersen, K. D. & Buck, W. R. Eduction, extension, and exhumation of ultrahigh-pressure rocks in metamorphic core complexes due to subduction initiation. Geochem. Geophys. Geosyst. 16, 2564–2581 (2015).

    Article  Google Scholar 

  24. Elsasser, W. M. Sea-floor spreading as thermal convection. J. Geophys. Res. 76, 1101–1112 (1971).

    Article  Google Scholar 

  25. Karig, D. E. Origin and development of marginal basins in the western Pacific. J. Geophys. Res. 76, 2542–2561 (1971).

    Article  Google Scholar 

  26. Tatsumi, Y., Otofuji, Y.-I., Matsuda, T. & Nohda, S. Opening of the Sea of Japan back-arc basin by asthenospheric injection. Tectonophysics 166, 317–329 (1989).

    Article  Google Scholar 

  27. Morgan, W. J. Deep mantle convection plumes and plate motions. AAPG Bull. 56, 203–213 (1972).

    Google Scholar 

  28. Molnar, P., England, P. C. & Jones, C. H. Mantle dynamics, isostasy, and the support of high terrain. J. Geophys. Res. Solid. Earth 120, 2014JB011724 (2015).

    Article  Google Scholar 

  29. Colli, L., Ghelichkhan, S. & Bunge, H.-P. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth. Geophys. Res. Lett. 43, 2016GL067929 (2016).

    Article  Google Scholar 

  30. Hoggard, M. J., White, N. & Al-Attar, D. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nat. Geosci. 9, 456–463 (2016).

    Article  Google Scholar 

  31. Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. & Besse, J. On causal links between flood basalts and continental breakup. Earth Planet. Sci. Lett. 166, 177–195 (1999).

    Article  Google Scholar 

  32. Buck, W. R. The role of magma in the development of the Afro-Arabian Rift System. Geol. Soc. Lond. Spec. Publ. 259, 43–54 (2006).

    Article  Google Scholar 

  33. Renne, P. R. et al. The age of Paraná Flood Volcanism, rifting of Gondwanaland, and the Jurassic–Cretaceous boundary. Science 258, 975–979 (1992).

    Article  Google Scholar 

  34. Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. Comptes Rendus Geosci. 335, 113–140 (2003).

    Article  Google Scholar 

  35. Mulibo, G. D. & Nyblade, A. A. Mantle transition zone thinning beneath eastern Africa: evidence for a whole-mantle superplume structure. Geophys. Res. Lett. 40, 3562–3566 (2013).

    Article  Google Scholar 

  36. Richter, F. & McKenzie, D. Simple plate models of mantle convection. J. Geophys. 44, 441–471 (1977).

    Google Scholar 

  37. Argus, D. F., Gordon, R. G. & DeMets, C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem. Geophys. Geosyst. 12, Q11001 (2011).

    Article  Google Scholar 

  38. Yoshida, M. & Yoshizawa, K. Continental drift with deep cratonic roots. Annu. Rev. Earth Planet. Sci. 49, 117–139 (2021).

    Article  Google Scholar 

  39. Coblentz, D. D., Richardson, R. M. & Sandiford, M. On the gravitational potential of the Earth’s lithosphere. Tectonics 13, 929–945 (1994).

    Article  Google Scholar 

  40. Bott, M. H. P. The stress regime associated with continental break-up. Geol. Soc. Lond. Spec. Publ. 68, 125–136 (1992).

    Article  Google Scholar 

  41. Zoback, M. L. & Mooney, W. D. Lithospheric buoyancy and continental intraplate stresses. Int. Geol. Rev. 45, 95–118 (2003).

    Article  Google Scholar 

  42. Globig, J. et al. New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis. J. Geophys. Res. Solid Earth 121, 2016JB012972 (2016).

    Article  Google Scholar 

  43. Ebinger, C. J. et al. Crustal structure of active deformation zones in Africa: implications for global crustal processes. Tectonics 36, 3298–3332 (2017).

    Article  Google Scholar 

  44. Afonso, J. C. et al. Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa. Nat. Geosci. 15, 405–410 (2022).

    Article  Google Scholar 

  45. Kendall, J.-M. & Lithgow-Bertelloni, C. Why is Africa rifting? Geol. Soc. Lond. Spec. Publ. 420, SP420.17 (2016).

    Article  Google Scholar 

  46. Moucha, R. & Forte, A. M. Changes in African topography driven by mantle convection. Nat. Geosci. 4, 707–712 (2011).

    Article  Google Scholar 

  47. Stamps, D. S., Flesch, L. M., Calais, E. & Ghosh, A. Current kinematics and dynamics of Africa and the East African rift system. J. Geophys. Res. Solid Earth 119, 5161–5186 (2014).

    Article  Google Scholar 

  48. Rajaonarison, T. A., Stamps, D. S. & Naliboff, J. Role of lithospheric buoyancy forces in driving deformation in East Africa from 3D geodynamic modeling. Geophys. Res. Lett. 48, e2020GL090483 (2021).

    Article  Google Scholar 

  49. Stamps, D. S., Kreemer, C., Fernandes, R., Rajaonarison, T. A. & Rambolamanana, G. Redefining East African rift system kinematics. Geology 49, 150–155 (2021).

    Article  Google Scholar 

  50. Jones, C. H., Unruh, J. R. & Sonder, L. J. The role of gravitational potential energy in active deformation in the southwestern United States. Nature 381, 37–41 (1996).

    Article  Google Scholar 

  51. Jones, C. H., Sonder, L. J. & Unruh, J. R. Lithospheric gravitational potential energy and past orogenesis: implications for conditions of initial Basin and Range and Laramide deformation. Geology 26, 639–642 (1998).

    Article  Google Scholar 

  52. Huerta, A. D. & Harry, D. L. The transition from diffuse to focused extension: modeled evolution of the West Antarctic rift system. Earth Planet. Sci. Lett. 255, 133–147 (2007).

    Article  Google Scholar 

  53. Bialas, R. W., Buck, W. R., Studinger, M. & Fitzgerald, P. G. Plateau collapse model for the transantarctic mountains–West antarctic rift system: insights from numerical experiments. Geology 35, 687–690 (2007).

    Article  Google Scholar 

  54. Kirkpatrick, J. D. et al. Scale-dependent influence of pre-existing basement shear zones on rift faulting: a case study from NE Brazil. J. Geol. Soc. 170, 237–247 (2013).

    Article  Google Scholar 

  55. Hodge, M., Fagereng, Å., Biggs, J. & Mdala, H. Controls on early-rift geometry: new perspectives from the Bilila-Mtakataka Fault, Malawi. Geophys. Res. Lett. 45, 3896–3905 (2018).

    Article  Google Scholar 

  56. Petersen, K. D. & Schiffer, C. Wilson cycle passive margins: control of orogenic inheritance on continental breakup. Gondwana Res. 39, 131–144 (2016).

    Article  Google Scholar 

  57. Wilson, J. T. Did the Atlantic close and then re-open? Nature 211, 676–681 (1966).

    Article  Google Scholar 

  58. Buiter, S. J. H. & Torsvik, T. H. A review of Wilson cycle plate margins: a role for mantle plumes in continental break-up along sutures? Gondwana Res. 26, 627–653 (2014).

    Article  Google Scholar 

  59. Daly, M. C., Chorowicz, J. & Fairhead, J. D. Rift basin evolution in Africa: the influence of reactivated steep basement shear zones. Geol. Soc. Lond. Spec. Publ. 44, 309–334 (1989).

    Article  Google Scholar 

  60. Maurin, J.-C. & Guiraud, R. Basement control in the development of the early cretaceous West and Central African rift system. Tectonophysics 228, 81–95 (1993).

    Article  Google Scholar 

  61. Stein, S. et al. Insights from North America’s failed Midcontinent Rift into the evolution of continental rifts and passive continental margins. Tectonophysics 744, 403–421 (2018).

    Article  Google Scholar 

  62. Schiffer, C. et al. Structural inheritance in the North Atlantic. Earth-Sci. Rev. 206, 102975 (2020).

    Article  Google Scholar 

  63. Osagiede, E. E. et al. Influence of zones of pre-existing crustal weakness on strain localization and partitioning during rifting: insights from analogue modeling using high resolution 3D digital image correlation. Tectonics 40, e2021TC006970 (2021).

    Article  Google Scholar 

  64. Kolawole, F., Phillips, T. B., Atekwana, E. A. & Jackson, C. A.-L. Structural inheritance controls strain distribution during early continental rifting, Rukwa rift. Front. Earth Sci. 9, 670 (2021).

    Article  Google Scholar 

  65. Dawson, S., Lao-Davila, D., Atekwana, E. & Salam, M. A. The influence of the Precambrian Mughese Shear Zone structures on strain accommodation in the Northern Malawi Rift. Tectonophysics 722, 53–68 (2018).

    Article  Google Scholar 

  66. Morley, C. K. Stress re-orientation along zones of weak fabrics in rifts: an explanation for pure extension in ‘oblique’ rift segments? Earth Planet. Sci. Lett. 297, 667–673 (2010).

    Article  Google Scholar 

  67. Kolawole, F. et al. Active deformation of Malawi Rift’s North Basin Hinge Zone modulated by reactivation of preexisting Precambrian shear zone fabric. Tectonics 37, 683–704 (2018).

    Article  Google Scholar 

  68. Laó-Dávila, D. A., Al-Salmi, H. S., Abdelsalam, M. G. & Atekwana, E. A. Hierarchical segmentation of the Malawi Rift: the influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts. Tectonics 34, 2399–2417 (2015).

    Article  Google Scholar 

  69. Manatschal, G., Lavier, L. & Chenin, P. The role of inheritance in structuring hyperextended rift systems: some considerations based on observations and numerical modeling. Gondwana Res. 27, 140–164 (2015).

    Article  Google Scholar 

  70. Byerlee, J. Friction of rocks. Pure Appl. Geophys. 116, 615–626 (1978).

    Article  Google Scholar 

  71. Escartín, J., Hirth, G. & Evans, B. Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. Earth Planet Sci. Lett. 151, 181–189 (1997).

    Article  Google Scholar 

  72. Tesei, T., Collettini, C., Carpenter, B. M., Viti, C. & Marone, C. Frictional strength and healing behavior of phyllosilicate-rich faults. J. Geophys. Res. Solid Earth 117, B09402 (2012).

    Article  Google Scholar 

  73. Viti, C., Collettini, C., Tesei, T., Tarling, M. S. & Smith, S. A. F. Deformation processes, textural evolution and weakening in retrograde serpentinites. Minerals 8, 241 (2018).

    Article  Google Scholar 

  74. Whitmarsh, R. B., Manatschal, G. & Minshull, T. A. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413, 150–154 (2001).

    Article  Google Scholar 

  75. Bayrakci, G. et al. Fault-controlled hydration of the upper mantle during continental rifting. Nat. Geosci. 9, 384–388 (2016).

    Article  Google Scholar 

  76. Liu, Z. et al. Lateral coexistence of ductile and brittle deformation shapes magma-poor distal margins: an example from the West Iberia-Newfoundland margins. Earth Planet. Sci. Lett. 578, 117288 (2022).

    Article  Google Scholar 

  77. Collettini, C. & Sibson, R. H. Normal faults, normal friction? Geology 29, 927–930 (2001).

    Article  Google Scholar 

  78. Yuan, X. P., Olive, J.-A. & Braun, J. Partially locked low-angle normal faults in cohesive upper crust. Tectonics 39, e2019TC005753 (2020).

    Article  Google Scholar 

  79. Bürgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Article  Google Scholar 

  80. Ruh, J., Tokle, L. & Behr, W. Grain-size-evolution controls on lithospheric weakening during continental rifting. Nat. Geosci. 15, 585–590 (2022).

    Article  Google Scholar 

  81. Hirth, G. & Kohlstedt, D. L. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys. Monogr. 138, 83–105 (2003).

    Google Scholar 

  82. Brune, S., Heine, C., Clift, P. D. & Pérez-Gussinyé, M. Rifted margin architecture and crustal rheology: reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Mar. Pet. Geol. 79, 257–281 (2017).

    Article  Google Scholar 

  83. Tetreault, J. L. & Buiter, S. J. H. The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up. Tectonophysics 746, 155–172 (2018).

    Article  Google Scholar 

  84. Le Gall, B., Vétel, W. & Morley, C. K. Inversion tectonics during continental rifting: the Turkana Cenozoic rifted zone, northern Kenya. Tectonics 24, TC2002 (2005).

    Google Scholar 

  85. Lavier, L. L., Buck, W. R. & Poliakov, A. N. B. Factors controlling normal fault offset in an ideal brittle layer. J. Geophys. Res. 105, 23431–23442 (2000).

    Article  Google Scholar 

  86. Olive, J.-A. & Behn, M. D. Rapid rotation of normal faults due to flexural stresses: an explanation for the global distribution of normal fault dips. J. Geophys. Res. Solid Earth 119, 2013JB010512 (2014).

    Article  Google Scholar 

  87. Buck, W. R. Effect of lithospheric thickness on the formation of high- and low-angle normal faults. Geology 21, 933–936 (1993).

    Article  Google Scholar 

  88. Buck, W. R. Modes of continental lithospheric extension. J. Geophys. Res. Solid Earth 96, 20161–20178 (1991).

    Article  Google Scholar 

  89. Albaric, J., Déverchère, J., Petit, C., Perrot, J. & Le Gall, B. Crustal rheology and depth distribution of earthquakes: insights from the central and southern East African Rift system. Tectonophysics 468, 28–41 (2009).

    Article  Google Scholar 

  90. Lavayssière, A. et al. Depth extent and kinematics of faulting in the Southern Tanganyika Rift, Africa. Tectonics 38, 842–862 (2019).

    Article  Google Scholar 

  91. Ebinger, C. J. et al. Kinematics of active deformation in the Malawi Rift and Rungwe Volcanic Province, Africa. Geochem. Geophys. Geosyst. 20, 3928–3951 (2019).

    Article  Google Scholar 

  92. Hamilton, W. Crustal extension in the Basin and Range Province, southwestern United States. Geol. Soc. Lond. Spec. Publ. 28, 155–176 (1987).

    Article  Google Scholar 

  93. Whitney, D. L., Teyssier, C., Rey, P. & Buck, W. R. Continental and oceanic core complexes. Geol. Soc. Am. Bull. 125, 273–298 (2013).

    Article  Google Scholar 

  94. Gans, P. B. & Gentry, B. J. Dike emplacement, footwall rotation, and the transition from magmatic to tectonic extension in the Whipple Mountains metamorphic core complex, southeastern California. Tectonics 35, 2016TC004215 (2016).

    Article  Google Scholar 

  95. Olive, J. & Escartín, J. Dependence of seismic coupling on normal fault style along the Northern Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 17, 4128–4152 (2016).

    Article  Google Scholar 

  96. Wernicke, B. Low-angle normal faults and seismicity: a review. J. Geophys. Res. Solid Earth 100, 20159–20174 (1995).

    Article  Google Scholar 

  97. Biemiller, J., Gabriel, A.-A. & Ulrich, T. The dynamics of unlikely slip: 3D modeling of low-angle normal fault rupture at the Mai’iu Fault, Papua New Guinea. Geochem. Geophys. Geosyst. 23, e2021GC010298 (2022).

    Article  Google Scholar 

  98. Chenin, P., Schmalholz, S. M., Manatschal, G. & Karner, G. D. Necking of the lithosphere: a reappraisal of basic concepts with thermo-mechanical numerical modeling. J. Geophys. Res. Solid Earth 123, 5279–5299 (2018).

    Article  Google Scholar 

  99. Brune, S., Popov, A. A. & Sobolev, S. V. Modeling suggests that oblique extension facilitates rifting and continental break-up. J. Geophys. Res. 117, B08402 (2012).

    Article  Google Scholar 

  100. Brune, S., Williams, S. E., Butterworth, N. P. & Müller, R. D. Abrupt plate accelerations shape rifted continental margins. Nature 536, 201–204 (2016).

    Article  Google Scholar 

  101. Ulvrova, M. M., Brune, S. & Williams, S. Breakup without borders: how continents speed up and slow down during rifting. Geophys. Res. Lett. 46, 1338–1347 (2019).

    Article  Google Scholar 

  102. Kneller, E. A., Johnson, C. A., Karner, G. D., Einhorn, J. & Queffelec, T. A. Inverse methods for modeling non-rigid plate kinematics: application to mesozoic plate reconstructions of the Central Atlantic. Comput. Geosci. 49, 217–230 (2012).

    Article  Google Scholar 

  103. Heine, C., Zoethout, J. & Müller, R. D. Kinematics of the South Atlantic rift. Solid Earth 4, 215–253 (2013).

    Article  Google Scholar 

  104. Whittaker, J. M., Williams, S. E. & Müller, R. D. Revised tectonic evolution of the Eastern Indian Ocean. Geochem. Geophys. Geosyst. 14, 1891–1909 (2013).

    Article  Google Scholar 

  105. Ernst, R. E. Large Igneous Provinces (Cambridge Univ. Press, 2014).

  106. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  Google Scholar 

  107. Ebinger, C. J. & Ibrahim, A. Multiple episodes of rifting in Central and East Africa: a re-evaluation of gravity data. Geol. Rundsch. 83, 689–702 (1994).

    Article  Google Scholar 

  108. Hendrie, D. B., Kusznir, N. J., Morley, C. K. & Ebinger, C. J. Cenozoic extension in northern Kenya: a quantitative model of rift basin development in the Turkana region. Tectonophysics 236, 409–438 (1994).

    Article  Google Scholar 

  109. Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Article  Google Scholar 

  110. Blackburn, T. J. et al. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340, 941–945 (2013).

    Article  Google Scholar 

  111. Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017).

    Article  Google Scholar 

  112. Schilling, J.-G., Kingsley, R. H., Hanan, B. B. & McCully, B. L. Nd-Sr-Pb isotopic variations along the Gulf of Aden: evidence for Afar mantle plume–continental lithosphere interaction. J. Geophys. Res. Solid. Earth 97, 10927–10966 (1992).

    Article  Google Scholar 

  113. Rooney, T., Furman, T., Bastow, I., Ayalew, D. & Yirgu, G. Lithospheric modification during crustal extension in the Main Ethiopian Rift. J. Geophys. Res. Solid Earth 112, B10201 (2007).

    Article  Google Scholar 

  114. Furman, T., Nelson, W. R. & Elkins-Tanton, L. T. Evolution of the East African rift: drip magmatism, lithospheric thinning and mafic volcanism. Geochim. Cosmochim. Acta 185, 418–434 (2016).

    Article  Google Scholar 

  115. Foley, S. F. & Fischer, T. P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10, 897–902 (2017).

    Article  Google Scholar 

  116. Muirhead, J. D. et al. Displaced cratonic mantle concentrates deep carbon during continental rifting. Nature 582, 67–72 (2020).

    Article  Google Scholar 

  117. King, S. D. & Anderson, D. L. Edge-driven convection. Earth Planet. Sci. Lett. 160, 289–296 (1998).

    Article  Google Scholar 

  118. Njinju, E. A., Stamps, D. S., Neumiller, K. & Gallager, J. Lithospheric control of melt generation beneath the Rungwe volcanic province, East Africa: implications for a plume source. J. Geophys. Res. Solid. Earth 126, e2020JB020728 (2021).

    Article  Google Scholar 

  119. Currie, C. A. & van Wijk, J. How craton margins are preserved: insights from geodynamic models. J. Geodyn. 100, 144–158 (2016).

    Article  Google Scholar 

  120. Rooney, T. O., Nelson, W. R., Dosso, L., Furman, T. & Hanan, B. The role of continental lithosphere metasomes in the production of HIMU-like magmatism on the northeast African and Arabian plates. Geology 42, 419–422 (2014).

    Article  Google Scholar 

  121. Pitcavage, E., Furman, T., Nelson, W. R., Kalegga, P. K. & Barifaijo, E. Petrogenesis of primitive lavas from the Toro Ankole and Virunga Volcanic Provinces: metasomatic mineralogy beneath East Africa’s Western Rift. Lithos 396–397, 106192 (2021).

    Article  Google Scholar 

  122. Rosenthal, A., Foley, S. F., Pearson, D. G., Nowell, G. M. & Tappe, S. Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift. Earth Planet. Sci. Lett. 284, 236–248 (2009).

    Article  Google Scholar 

  123. Sparks, D. W. & Parmentier, E. M. Melt extraction from the mantle beneath spreading centers. Earth Planet. Sci. Lett. 105, 368–377 (1991).

    Article  Google Scholar 

  124. McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).

    Article  Google Scholar 

  125. Sleep, N. H. Lateral flow of hot plume material ponded at sublithospheric depths. J. Geophys. Res. Solid Earth 101, 28065–28083 (1996).

    Article  Google Scholar 

  126. Havlin, C., Parmentier, E. M. & Hirth, G. Dike propagation driven by melt accumulation at the lithosphere–asthenosphere boundary. Earth Planet. Sci. Lett. 376, 20–28 (2013).

    Article  Google Scholar 

  127. Bialas, R. W., Buck, W. R. & Qin, R. How much magma is required to rift a continent? Earth Planet. Sci. Lett. 292, 68–78 (2010).

    Article  Google Scholar 

  128. Olive, J.-A. & Dublanchet, P. Controls on the magmatic fraction of extension at mid-ocean ridges. Earth Planet. Sci. Lett. 549, 116541 (2020).

    Article  Google Scholar 

  129. Weissel, J. K. & Karner, G. D. Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. J. Geophys. Res. Solid Earth 94, 13919–13950 (1989).

    Article  Google Scholar 

  130. Leeder, M. R. & Gawthorpe, R. L. Sedimentary models for extensional tilt-block/half-graben basins. Geol. Soc. Lond. Spec. Publ. 28, 139–152 (1987).

    Article  Google Scholar 

  131. Burov, E. & Cloetingh, S. Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins. Earth Planet. Sci. Lett. 150, 7–26 (1997).

    Article  Google Scholar 

  132. Burov, E. & Poliakov, A. Erosion and rheology controls on synrift and postrift evolution: verifying old and new ideas using a fully coupled numerical model. J. Geophys. Res. Solid Earth 106, 16461–16481 (2001).

    Article  Google Scholar 

  133. Bialas, R. W. & Buck, W. R. How sediment promotes narrow rifting: application to the Gulf of California. Tectonics 28, TC4014 (2009).

    Article  Google Scholar 

  134. Olive, J.-A., Behn, M. D. & Malatesta, L. C. Modes of extensional faulting controlled by surface processes. Geophys. Res. Lett. 41, 6725–6733 (2014).

    Article  Google Scholar 

  135. Olive, J.-A., Malatesta, L. C., Behn, M. D. & Buck, R. W. Sensitivity of rift tectonics to global variability in the efficiency of river erosion. Proc. Natl Acad. Sci. USA 119, e2115077119 (2022).

    Article  Google Scholar 

  136. Theunissen, T. & Huismans, R. S. Long-term coupling and feedback between tectonics and surface processes during non-volcanic rifted margin formation. J. Geophys. Res. Solid Earth 124, 12323–12347 (2019).

    Article  Google Scholar 

  137. Neuharth, D. et al. Evolution of rift systems and their fault networks in response to surface processes. Tectonics 41, e2021TC007166 (2022).

    Article  Google Scholar 

  138. McNeill, L. C. et al. High-resolution record reveals climate-driven environmental and sedimentary changes in an active rift. Sci. Rep. 9, 3116 (2019).

    Article  Google Scholar 

  139. Lyons, R. P., Scholz, C. A., Buoniconti, M. R. & Martin, M. R. Late quaternary stratigraphic analysis of the Lake Malawi Rift, East Africa: an integration of drill-core and seismic-reflection data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303, 20–37 (2011).

    Article  Google Scholar 

  140. Xue, L., Moucha, R. & Scholz, C. A. Climate-driven stress changes and normal fault behavior in the Lake Malawi (Nyasa) Rift, East Africa. Earth Planet. Sci. Lett. 593, 117693 (2022).

    Article  Google Scholar 

  141. de Sagazan, C. & Olive, J.-A. Assessing the impact of sedimentation on fault spacing at the Andaman Sea spreading center. Geology 49, 447–451 (2020).

    Article  Google Scholar 

  142. Buck, W. R. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins. Earth Planet. Sci. Lett. 466, 62–69 (2017).

    Article  Google Scholar 

  143. Morgan, R. L. & Watts, A. B. Seismic and gravity constraints on flexural models for the origin of seaward dipping reflectors. Geophys. J. Int. 214, 2073–2083 (2018).

    Article  Google Scholar 

  144. Péron-Pinvidic, G. & Manatschal, G. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. Int. J. Earth Sci. 98, 1581–1597 (2009).

    Article  Google Scholar 

  145. Neuharth, D., Brune, S., Glerum, A., Heine, C. & Welford, J. K. Formation of continental microplates through rift linkage: numerical modeling and its application to the Flemish Cap and Sao Paulo Plateau. Geochem. Geophys. Geosyst. 22, e2020GC009615 (2021).

    Article  Google Scholar 

  146. King, M. T. & Welford, J. K. Advances in deformable plate tectonic models: 2. Reconstructing the southern North Atlantic back through time. Geochem. Geophys. Geosyst. 23, e2022GC010373 (2022).

    Google Scholar 

  147. Steinberger, B., Bredow, E., Lebedev, S., Schaeffer, A. & Torsvik, T. H. Widespread volcanism in the Greenland–North Atlantic region explained by the Iceland plume. Nat. Geosci. 12, 61 (2019).

    Article  Google Scholar 

  148. Koptev, A. et al. Contrasted continental rifting via plume–craton interaction: applications to Central East African Rift. Geosci. Front. 7, 221–236 (2016).

    Article  Google Scholar 

  149. Kusznir, N. J. & Park, R. G. The extensional strength of the continental lithosphere: its dependence on geothermal gradient, and crustal composition and thickness. Geol. Soc. Lond. Spec. Publ. 28, 35–52 (1987).

    Article  Google Scholar 

  150. Gawthorpe, R. L. et al. Tectono-sedimentary evolution of the Plio-Pleistocene Corinth rift, Greece. Basin Res. 30, 448–479 (2018).

    Article  Google Scholar 

  151. Tregoning, P. et al. Estimation of current plate motions in Papua New Guinea from global positioning system observations. J. Geophys. Res. Solid Earth 103, 12181–12203 (1998).

    Article  Google Scholar 

  152. Tesauro, M., Hollenstein, C., Egli, R., Geiger, A. & Kahle, H.-G. Continuous GPS and broad-scale deformation across the Rhine Graben and the Alps. Int. J. Earth Sci. 94, 525–537 (2005).

    Article  Google Scholar 

  153. Berglund, H. T. et al. Distributed deformation across the Rio Grande Rift, Great Plains, and Colorado Plateau. Geology 40, 23–26 (2012).

    Article  Google Scholar 

  154. Heckenbach, E. L., Brune, S., Glerum, A. C. & Bott, J. Is there a speed limit for the thermal steady-state assumption in continental rifts? Geochem. Geophys. Geosyst. 22, e2020GC009577 (2021).

    Article  Google Scholar 

  155. van Wijk, J. W. & Cloetingh, S. A. P. L. Basin migration caused by slow lithospheric extension. Earth Planet. Sci. Lett. 198, 275–288 (2002).

    Article  Google Scholar 

  156. Heine, C. & Brune, S. Oblique rifting of the equatorial Atlantic: why there is no Saharan Atlantic Ocean. Geology 42, 211–214 (2014).

    Article  Google Scholar 

  157. Faleide, J. I. et al. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 31, 82–91 (2008).

    Article  Google Scholar 

  158. Naliboff, J. & Buiter, S. J. H. Rift reactivation and migration during multiphase extension. Earth Planet. Sci. Lett. 421, 58–67 (2015).

    Article  Google Scholar 

  159. Foster, D. A. & Gleadow, A. J. W. Structural framework and denudation history of the flanks of the Kenya and Anza Rifts, East Africa. Tectonics 15, 258–271 (1996).

    Article  Google Scholar 

  160. Torres Acosta, V. et al. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: links to diachronous spatiotemporal evolution of rifting in East Africa. Tectonics 34, 2367–2386 (2015).

    Article  Google Scholar 

  161. Faulkner, D. R. et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 32, 1557–1575 (2010).

    Article  Google Scholar 

  162. Rowland, J. V. & Sibson, R. H. Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids 4, 259–283 (2004).

    Article  Google Scholar 

  163. Lund, J. W. & Toth, A. N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 90, 101915 (2021).

    Article  Google Scholar 

  164. Ali, S. H. et al. Mineral supply for sustainable development requires resource governance. Nature 543, 367–372 (2017).

    Article  Google Scholar 

  165. Rodriguez Piceda, C. et al. Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling. Int. J. Earth Sci. 110, 2333–2359 (2021).

    Article  Google Scholar 

  166. Tosdal, R. M., Dilles, J. H. & Cooke, D. R. From source to sinks in auriferous magmatic-hydrothermal porphyry and epithermal deposits. Elements 5, 289–295 (2009).

    Article  Google Scholar 

  167. Rowland, J. V. & Simmons, S. F. Hydrologic, magmatic, and tectonic controls on hydrothermal flow, taupo volcanic zone, New Zealand: implications for the formation of epithermal vein deposits. Econ. Geol. 107, 427–457 (2012).

    Article  Google Scholar 

  168. Hoggard, M. J. et al. Global distribution of sediment-hosted metals controlled by craton edge stability. Nat. Geosci. 13, 504–510 (2020).

    Article  Google Scholar 

  169. Lawley, C. J. M. et al. Data-driven prospectivity modelling of sediment–hosted Zn–Pb mineral systems and their critical raw materials. Ore Geol. Rev. 141, 104635 (2022).

    Article  Google Scholar 

  170. Lee, H. et al. Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9, 145–149 (2016).

    Article  Google Scholar 

  171. Frondini, F. et al. Carbon dioxide degassing from Tuscany and Northern Latium (Italy). Glob. Planet. Change 61, 89–102 (2008).

    Article  Google Scholar 

  172. Seward, T. M. & Kerrick, D. M. Hydrothermal CO2 emission from the Taupo Volcanic Zone, New Zealand. Earth Planet. Sci. Lett. 139, 105–113 (1996).

    Article  Google Scholar 

  173. Weinlich, F. H. et al. An active subcontinental mantle volatile system in the western Eger rift, central Europe: gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim. Cosmochim. Acta 63, 3653–3671 (1999).

    Article  Google Scholar 

  174. Wong, K. et al. Deep carbon cycling over the past 200 million years: a review of fluxes in different tectonic settings. Front. Earth Sci. 7, 263 (2019).

    Article  Google Scholar 

  175. Jones, J. R., Stamps, D. S., Wauthier, C., Saria, E. & Biggs, J. Evidence for slip on a border fault triggered by magmatic processes in an immature continental rift. Geochem. Geophys. Geosyst. 20, 2515–2530 (2019).

    Article  Google Scholar 

  176. Pagli, C. et al. Shallow axial magma chamber at the slow-spreading Erta Ale Ridge. Nat. Geosci. 5, 284–288 (2012).

    Article  Google Scholar 

  177. Wright, T. J. et al. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442, 291–294 (2006).

    Article  Google Scholar 

  178. Calais, E. et al. Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa. Nature 456, 783–787 (2008).

    Article  Google Scholar 

  179. Karabacak, V., Ring, U. & Uysal, I. T. The off-fault deformation on the North Anatolian Fault zone and assessment of slip rate from carbonate veins. Tectonophysics 795, 228633 (2020).

    Article  Google Scholar 

  180. Herbert, J. W., Cooke, M. L., Oskin, M. & Difo, O. How much can off-fault deformation contribute to the slip rate discrepancy within the eastern California shear zone? Geology 42, 71–75 (2014).

    Article  Google Scholar 

  181. Stamps, D. S., Saria, E. & Kreemer, C. A geodetic strain rate model for the East African Rift System. Sci. Rep. 8, 732 (2018).

    Article  Google Scholar 

  182. Muirhead, J. D. et al. Evolution of upper crustal faulting assisted by magmatic volatile release during early-stage continental rift development in the East African Rift. Geosphere 12, 1670–1700 (2016).

    Article  Google Scholar 

  183. Mana, S., Furman, T., Turrin, B. D., Feigenson, M. D. & Swisher, C. C. III Magmatic activity across the East African North Tanzanian Divergence Zone. J. Geol. Soc. 172, 368–389 (2015).

    Article  Google Scholar 

  184. Williams, J. N. et al. The Malawi active fault database: an onshore–offshore database for regional assessment of seismic hazard and tectonic evolution. Geochem. Geophys. Geosyst. 23, e2022GC010425 (2022).

    Article  Google Scholar 

  185. Shillington, D. J. et al. Controls on rift faulting in the North Basin of the Malawi (Nyasa) Rift, East Africa. Tectonics 39, e2019TC005633 (2020).

    Article  Google Scholar 

  186. Njinju, E. A. et al. Lithospheric structure of the Malawi Rift: implications for magma-poor rifting processes. Tectonics 38, 3835–3853 (2019).

    Article  Google Scholar 

  187. Hopper, E. et al. Preferential localized thinning of lithospheric mantle in the melt-poor Malawi Rift. Nat. Geosci. 13, 584–589 (2020).

    Article  Google Scholar 

  188. Buck, W. R. in Treatise on Geophysics 2nd edn Vol. 6 (eds Schubert, G. & Watts, A.B) 325–379 (Elsevier, 2015).

  189. Bagley, B. & Nyblade, A. A. Seismic anisotropy in eastern Africa, mantle flow, and the African superplume. Geophys. Res. Lett. 40, 1500–1505 (2013).

    Article  Google Scholar 

  190. Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the triassic. Tectonics 38, 1884–1907 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the scientific input, writing and editing of the manuscript.

Corresponding author

Correspondence to Sascha Brune.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Basal shear stresses

A stress that is imposed by viscous mantle flow at the base of the lithosphere.

Core complexes

Structures where metamorphosed lower crustal rocks are exhumed to the surface along long-offset normal faults.

Differential stresses

The difference between the maximum and minimum principal stresses.

Distal margins

The near-ocean domain of rifted margins that is characterized by thin continental crust, titled blocks, regions of exhumed mantle or seaward dipping reflectors.

Deviatoric stress

The part of the stress tensor that is related to distortion.

Driving forces

Plate tectonic driving forces result from gravity acting on lateral variations in density.

Dynamic topography

The component of surface topography of Earth that is generated by mantle flow.

Exploitation

A process by which extensional brittle rift structures (faults and joints) develop along pre-existing strength anisotropies inherited from an older compressional tectonic event

Gravitational potential energy

(GPE). The energy of an object owing to its position in a gravitational field. GPE gradients constitute a force that emerges owing to lateral topography and density variations.

Large igneous provinces

(LIPs). Large regions of the crust of the Earth formed by massive volumes of igneous rocks. LIPs are caused by magma generation linked to mantle plumes.

Line force

A force that acts along a line perpendicular to a plate boundary (unit: N m−1) and that can be directly compared with estimates of lithospheric strength.

Lithospheric strength

The vertical integral of the maximum differential stress (the yield stress) between the surface of the Earth and the lithosphere–asthenosphere boundary. Unit: N m1.

Mantle plume

An upwelling in the mantle characterized by high temperature and low density, which is classically depicted with a columnar tail and a mushroom-shaped head.

Mantle tractions

The force per area exerted by mantle flow along the base of a plate. A vector variable with units of stress (MPa).

Metasomatism

The chemical alteration of a rock by hydrothermal and other fluids.

Necking

Localized thinning of the lithosphere that is often accompanied by a pronounced reduction in rift strength.

Proximal margins

The near-coastal domains of rifted margins that record the early phases of extension, often characterized by sedimentary basins and steep normal faults.

Resisting factors

Factors that oppose tectonic deformation. Resistance can be exerted statically or through dynamic processes.

Rifted continental margins

The edge of a continent that was formed by continental extension (as opposed to continental margins shaped by subduction or transform faulting).

Serpentinization

Serpentinization is a chemical alteration process of ultramafic rocks where olivine, pyroxene and water react to serpentine minerals.

Terranes

A crustal fragment that has been broken off its original plate. If accreted to another plate, terranes feature distinctly different properties than adjacent crust owing to their different geological histories

Weakening processes

Processes that reduce the strength of the lithosphere, for instance, owing to temperature increase, mechanical damage or increased fluid pressure.

Wilson cycles

Represent the concept that the same plate boundaries are involved repeatedly during plate tectonic history, which implies that inherited plate weaknesses persist over geological times.

Yield

The maximum differential stress that a material can sustain before it deforms by brittle fracture or ductile flow.

Yield strength envelopes

A diagram of the maximum differential stress that the lithosphere can withstand as a function of depth.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brune, S., Kolawole, F., Olive, JA. et al. Geodynamics of continental rift initiation and evolution. Nat Rev Earth Environ 4, 235–253 (2023). https://doi.org/10.1038/s43017-023-00391-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00391-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing