Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arginine-rhamnosylation as new strategy to activate translation elongation factor P

A Corrigendum to this article was published on 18 March 2015

This article has been updated

Abstract

Ribosome stalling at polyproline stretches is common and fundamental. In bacteria, translation elongation factor P (EF-P) rescues such stalled ribosomes, but only when it is post-translationally activated. In Escherichia coli, activation of EF-P is achieved by (R)-β-lysinylation and hydroxylation of a conserved lysine. Here we have unveiled a markedly different modification strategy in which a conserved arginine of EF-P is rhamnosylated by a glycosyltransferase (EarP) using dTDP-L-rhamnose as a substrate. This is to our knowledge the first report of N-linked protein glycosylation on arginine in bacteria and the first example in which a glycosylated side chain of a translation elongation factor is essential for function. Arginine-rhamnosylation of EF-P also occurs in clinically relevant bacteria such as Pseudomonas aeruginosa. We demonstrate that the modification is needed to develop pathogenicity, making EarP and dTDP-L-rhamnose–biosynthesizing enzymes ideal targets for antibiotic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioinformatic identification of the EarP-arginine type EF-P subfamily.
Figure 2: Phenotypic analysis of S. oneidensis MR-1 earP and efp deletion mutants.
Figure 3: Dependent peptide MS analysis of the S. oneidensis MR-1 EF-P modification.
Figure 4: In vivo analysis of S. oneidensis MR-1 EF-P functionality depending on NDP-deoxyhexose biosyntheses.
Figure 5: EF-P rhamnosylation, mode of action and impact on pathogenicity.

Similar content being viewed by others

Change history

  • 24 February 2015

    In the version of this article initially published online, the second author's middle initial was inadvertently omitted. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Tanner, D.R., Cariello, D.A., Woolstenhulme, C.J., Broadbent, M.A. & Buskirk, A.R. Genetic identification of nascent peptides that induce ribosome stalling. J. Biol. Chem. 284, 34809–34818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Woolstenhulme, C.J. et al. Nascent peptides that block protein synthesis in bacteria. Proc. Natl. Acad. Sci. USA 110, E878–E887 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Peil, L. et al. Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc. Natl. Acad. Sci. USA 110, 15265–15270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hersch, S.J. et al. Divergent protein motifs direct elongation factor P–mediated translational regulation in Salmonella enterica and Escherichia coli. mBio 4, e00180–e00113 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Elgamal, S. et al. EF-P dependent pauses integrate proximal and distal signals during translation. PLoS Genet. 10, e1004553 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Starosta, A.L. et al. Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Res. 42, 10711–10719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ude, S. et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85 (2013).

    CAS  PubMed  Google Scholar 

  8. Doerfel, L.K. et al. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339, 85–88 (2013).

    CAS  PubMed  Google Scholar 

  9. Gutierrez, E. et al. eIF5A promotes translation of polyproline motifs. Mol. Cell 51, 35–45 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Saini, P., Eyler, D.E., Green, R. & Dever, T.E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanawa-Suetsugu, K. et al. Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc. Natl. Acad. Sci. USA 101, 9595–9600 (2004).

    PubMed  PubMed Central  Google Scholar 

  12. Blaha, G., Stanley, R.E. & Steitz, T.A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Park, M.H., Cooper, H.L. & Folk, J.E. Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proc. Natl. Acad. Sci. USA 78, 2869–2873 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, M.H., Cooper, H.L. & Folk, J.E. The biosynthesis of protein-bound hypusine (N-ɛ-(4-amino-2-hydroxybutyl)lysine). Lysine as the amino acid precursor and the intermediate role of deoxyhypusine (N-ɛ-(4-aminobutyl)lysine). J. Biol. Chem. 257, 7217–7222 (1982).

    CAS  PubMed  Google Scholar 

  15. Cooper, H.L., Park, M.H., Folk, J.E., Safer, B. & Braverman, R. Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proc. Natl. Acad. Sci. USA 80, 1854–1857 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Navarre, W.W. et al. PoxA, YjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol. Cell 39, 209–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilreath, M.S. et al. β-Lysine discrimination by lysyl-tRNA synthetase. FEBS Lett. 585, 3284–3288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C. & Yokoyama, S. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat. Struct. Mol. Biol. 17, 1136–1143 (2010).

    CAS  PubMed  Google Scholar 

  19. Peil, L. et al. Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nat. Chem. Biol. 8, 695–697 (2012).

    CAS  PubMed  Google Scholar 

  20. Bailly, M. & de Crecy-Lagard, V. Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. Biol. Direct 5, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Bullwinkle, T.J. et al. (R)-β-Lysine–modified elongation factor P functions in translation elongation. J. Biol. Chem. 288, 4416–4423 (2013).

    CAS  PubMed  Google Scholar 

  22. Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    CAS  PubMed  Google Scholar 

  23. Hau, H.H. & Gralnick, J.A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007).

    CAS  PubMed  Google Scholar 

  24. Fredrickson, J.K. et al. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6, 592–603 (2008).

    CAS  PubMed  Google Scholar 

  25. Peng, W.T., Banta, L.M., Charles, T.C. & Nester, E.W. The chvH locus of Agrobacterium encodes a homologue of an elongation factor involved in protein synthesis. J. Bacteriol. 183, 36–45 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Haneburger, I., Eichinger, A., Skerra, A. & Jung, K. New insights into the signaling mechanism of the pH-responsive, membrane-integrated transcriptional activator CadC of Escherichia coli. J. Biol. Chem. 286, 10681–10689 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  28. Mäki, M. & Renkonen, R. Biosynthesis of 6-deoxyhexose glycans in bacteria. Glycobiology 14, 1R–15R (2004).

    PubMed  Google Scholar 

  29. Jimenez, P.N. et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76, 46–65 (2012).

    CAS  PubMed  Google Scholar 

  30. Singh, D.G. et al. β-Glucosylarginine: a new glucose-protein bond in a self-glucosylating protein from sweet corn. FEBS Lett. 376, 61–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Li, S. et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501, 242–246 (2013).

    CAS  PubMed  Google Scholar 

  32. Pearson, J.S. et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501, 247–251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Eddy, S.R. A new generation of homology search tools based on probabilistic inference. Genome. Inform. 23, 205–211 (2009).

    PubMed  Google Scholar 

  34. Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Price, M.N., Dehal, P.S. & Arkin, A.P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keilberg, D., Wuichet, K., Drescher, F. & Sogaard-Andersen, L. A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus. PLoS Genet. 8, e1002951 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2012).

    CAS  PubMed  Google Scholar 

  40. Jacobs, M.A. et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 14339–14344 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidt, J. et al. The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling. PLoS ONE 6, e18184 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Heermann, R., Zeppenfeld, T. & Jung, K. Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red®/ET® Recombination. Microb. Cell Fact. 7, 14 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Lassak, J., Henche, A.L., Binnenkade, L. & Thormann, K.M. ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 76, 3263–3274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    CAS  PubMed  Google Scholar 

  45. Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    CAS  PubMed  Google Scholar 

  47. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    CAS  PubMed  Google Scholar 

  48. Neuhauser, N., Michalski, A., Cox, J. & Mann, M. Expert system for computer-assisted annotation of MS/MS spectra. Mol. Cell. Proteomics 11, 1500–1509 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. Kharel, M.K., Lian, H. & Rohr, J. Characterization of the TDP-d-ravidosamine biosynthetic pathway: one-pot enzymatic synthesis of TDP-d-ravidosamine from thymidine-5-phosphate and glucose-1-phosphate. Org. Biomol. Chem. 9, 1799–1808 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, G. et al. Cooperation of two bifunctional enzymes in the biosynthesis and attachment of deoxysugars of the antitumor antibiotic mithramycin. Angew. Chem. Int. Edn. Engl. 51, 10638–10642 (2012).

    CAS  Google Scholar 

  51. Wang, G., Kharel, M.K., Pahari, P. & Rohr, J. Investigating mithramycin deoxysugar biosynthesis: enzymatic total synthesis of TDP-d-olivose. ChemBioChem 12, 2568–2571 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gödeke, J., Pustelny, C. & Haussler, S. Recycling of peptidyl-tRNAs by peptidyl-tRNA hydrolase counteracts azithromycin-mediated effects on Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 1617–1624 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Haid, S., Windisch, M.P., Bartenschlager, R. & Pietschmann, T. Mouse-specific residues of claudin-1 limit hepatitis C virus genotype 2a infection in a human hepatocyte cell line. J. Virol. 84, 964–975 (2010).

    CAS  PubMed  Google Scholar 

  54. Gentzsch, J. et al. Hepatitis C virus complete life cycle screen for identification of small molecules with pro- or antiviral activity. Antiviral Res. 89, 136–148 (2011).

    CAS  PubMed  Google Scholar 

  55. Essar, D.W., Eberly, L., Hadero, A. & Crawford, I.P. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 172, 884–900 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilhelm, S., Gdynia, A., Tielen, P., Rosenau, F. & Jaeger, K.E. The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J. Bacteriol. 189, 6695–6703 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ochsner, U.A., Koch, A.K., Fiechter, A. & Reiser, J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol. 176, 2044–2054 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank I. Weitl for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft: Center for Integrated Protein Science Munich (CiPSM; Exc114/2 to K.J. and WI3285/4-1 to D.N.W.) and the Max Planck Society (to E.C.K., K.W., L.S.-A. and M.M.). A.L.S. is funded by an AXA Research Fund Postdoctoral Fellowship. The work of S.H. and J.G. was supported by the Helmholtz Association and the Bundesministerium für Bildung und Forschung. J.-M.C. and J.R are funded by the US National Institutes of Health (CA 091901).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and K.J. designed the experiments and wrote the manuscript. J.L., A.L.S. and D.N.W. discovered EarP and arginine-type EF-P using bioinformatics. K.W., J.L. and L.S.-A. performed phylogenetic analyses. J.L. and M.F. generated S. oneidensis and E. coli deletion mutants as well as all of the plasmids used in the study. All phenotypic analysis was performed by J.L. and M.F. J.L. purified proteins for MS analysis, which was performed by E.C.K. and analyzed by E.C.K. and M.M. TDP-L-rhamnose was synthesized by J.-M.C. and J.R. for in vitro glycosylation performed by J.L. Modeling of modified EF-P to the ribosome was done by D.N.W. Phenotypic characterization of P. aeruginosa Δefp and ΔearP mutants was performed by J.G. and analyzed by J.G. and S.H.

Corresponding authors

Correspondence to Jürgen Lassak or Kirsten Jung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12 and Supplementary Tables 1–4. (PDF 3661 kb)

Supplementary Data Set 1

Distribution of EF-P, EpmA, EpmB, EpmC, EarP, and RmlD homologs in the representative genome set (XLS 189 kb)

Supplementary Data Set 2

EF-P, EpmA, EpmB, EpmC, EarP, and RmlD sequences identified in the representative genome set. (XLS 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lassak, J., Keilhauer, E., Fürst, M. et al. Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nat Chem Biol 11, 266–270 (2015). https://doi.org/10.1038/nchembio.1751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1751

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology