Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E2F8 is essential for polyploidization in mammalian cells

Abstract

Polyploidization is observed in all mammalian species and is a characteristic feature of hepatocytes, but its molecular mechanism and biological significance are unknown. Hepatocyte polyploidization in rodents occurs through incomplete cytokinesis, starts after weaning and increases with age. Here, we show in mice that atypical E2F8 is induced after weaning and required for hepatocyte binucleation and polyploidization. A deficiency in E2f8 led to an increase in the expression level of E2F target genes promoting cytokinesis and thereby preventing polyploidization. In contrast, loss of E2f1 enhanced polyploidization and suppressed the polyploidization defect of hepatocytes deficient for atypical E2Fs. In addition, E2F8 and E2F1 were found on the same subset of target promoters. Contrary to the long-standing hypothesis that polyploidization indicates terminal differentiation and senescence, we show that prevention of polyploidization through inactivation of atypical E2Fs has, surprisingly, no impact on liver differentiation, zonation, metabolism and regeneration. Together, these results identify E2F8 as a repressor and E2F1 as an activator of a transcriptional network controlling polyploidization in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atypical E2Fs are induced during the onset of hepatocyte polyploidization.
Figure 2: E2F8 is essential for hepatocyte binucleation.
Figure 3: E2F8 is essential for hepatocyte polyploidization.
Figure 4: Inactivation of atypical E2Fs increases E2F target gene expression.
Figure 5: Inactivation of atypical E2Fs increases cytokinetic gene expression.
Figure 6: E2F8 and E2F1 bind to the same promoters of cytokinetic genes.
Figure 7: Loss of E2f1 restores polyploidization in E2f7−/−E2f8−/− livers.
Figure 8: Polyploidization has no impact on hepatic differentiation or regeneration.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

References

  1. Otto, S. P. The evolutionary consequences of polyploidy. Cell 131, 452–462 (2007).

    Article  CAS  Google Scholar 

  2. Lee, H. O., Davidson, J. M. & Duronio, R. J. Endoreplication: polyploidy with purpose. Gen. Dev. 23, 2461–2477 (2009).

    Article  CAS  Google Scholar 

  3. Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836–846 (2005).

    Article  CAS  Google Scholar 

  4. Gupta, S. Hepatic polyploidy and liver growth control. Seminars in Cancer Biol. 10, 161–171 (2000).

    Article  CAS  Google Scholar 

  5. Celton-Morizur, S. & Desdouets, C. Polyploidization of liver cells. Adv. Exp. Med. Biol. 646, 123–135 (2010).

    Article  Google Scholar 

  6. Gorla, G. R., Malhi, H. & Gupta, S. Polyploidy associated with oxidative injury attenuates proliferative potential of cells. J. Cell. Sci. 114, 2943–2951 (2001).

    CAS  PubMed  Google Scholar 

  7. Sigal, S. H. et al. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events. Am. J. Physiol. Gastrointest. Liver Physiol. 276, G1260–G1272 (1999).

    Article  Google Scholar 

  8. Kudryavtsev, B. N., Kudryavtseva, M. V., Sakuta, G. A. & Stein, G. I. Human hepatocyte polyploidization kinetics in the course of life cycle. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 64, 387–393 (1993).

    Article  CAS  Google Scholar 

  9. Torres, S. et al. Thyroid hormone regulation of rat hepatocyte proliferation and polyploidization. Am. J. Physiol. 276, G155–G163 (1999).

    Google Scholar 

  10. Celton-Morizur, S., Merlen, G., Couton, D., Margall-Ducos, G. & Desdouets, C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J. Clin. Invest. 119, 1880–1887 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guidotti, J. et al. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J. Biol. Chem. 278, 19095–19101 (2003).

    Article  CAS  Google Scholar 

  12. Duncan, A. W. et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467, 707–710 (2010).

    Article  CAS  Google Scholar 

  13. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5, 45–54 (2004).

    Article  CAS  Google Scholar 

  14. Chen, H., Tsai, S. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785–797 (2009).

    Article  CAS  Google Scholar 

  15. Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

    Article  CAS  Google Scholar 

  16. Lammens, T., Li, J., Leone, G. & De Veylder, L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 19, 111–118 (2009).

    Article  CAS  Google Scholar 

  17. Li, J. et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev. Cell 14, 62–75 (2008).

    Article  CAS  Google Scholar 

  18. de Bruin, A. et al. Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 278, 42041–42049 (2003).

    Article  CAS  Google Scholar 

  19. Maiti, B. et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 280, 18211–18220 (2005).

    Article  CAS  Google Scholar 

  20. Di Stefano, L., Jensen, M. R. & Helin, K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 22, 6289–6298 (2003).

    Article  CAS  Google Scholar 

  21. Christensen, J. et al. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucl. Acids Res. 33, 5458–5470.

    Article  CAS  Google Scholar 

  22. Logan, N. et al. E2F-7: a distinctive E2F family member with an unusual organization of DNA-binding domains. Oncogene 23, 5138–5150 (2004).

    Article  CAS  Google Scholar 

  23. Logan, N. et al. E2F-8: an E2F family member with a similar organization of DNA-binding domains to E2F-7. Oncogene 24, 5000–5004 (2005).

    Article  CAS  Google Scholar 

  24. Postic, C. & Magnuson, M. A. DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis 26, 149–150 (2000).

    Article  CAS  Google Scholar 

  25. Westendorp, B. et al. E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucl. Acids Res. 40, 3511–3523 (2012).

    Article  CAS  Google Scholar 

  26. Margall-Ducos, G., Celton-Morizur, S., Couton, D., Bregerie, O. & Desdouets, C. Liver tetraploidization is controlled by a new process of incomplete cytokinesis. J. Cell Sci. 120, 3633–3639 (2007).

    Article  CAS  Google Scholar 

  27. Zambelli, F., Pesole, G. & Pavesi, G. Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucl. Acids Res. 37, W247–W252 (2009).

    Article  Google Scholar 

  28. Conner, E. A., Lemmer, E. R., Sánchez, A., Factor, V. M. & Thorgeirsson, S. S. E2F1 blocks and c-Myc accelerates hepatic ploidy in transgenic mouse models. Biochem. Biophys. Res. Commun. 302, 114–120 (2003).

    Article  CAS  Google Scholar 

  29. Jungermann, K. & Kietzmann, T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu. Rev. Nutr. 16, 179–203 (1996).

    Article  CAS  Google Scholar 

  30. Schmucker, D. L. Hepatocyte fine structure during maturation and senescence. J. Electron Microsc. Tech. 14, 106–125 (1990).

    Article  CAS  Google Scholar 

  31. Seguin, L. et al. CUX1 and E2F1 regulate coordinated expression of the mitotic complex genes Ect2, MgcRacGAP, and MKLP1 in S Phase. Mol. Cell. Biol. 29, 570–581 (2009).

    Article  CAS  Google Scholar 

  32. Sakata, H., Rubin, J. S., Taylor, W. G. & Miki, T. A rho-specific exchange factor ect2 is induced from S to M phases in regenerating mouse liver. Hepatology 32, 193–199 (2000).

    Article  CAS  Google Scholar 

  33. Prasanth, S. G., Prasanth, K. V. & Stillman, B. Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 297, 1026–1031 (2002).

    Article  CAS  Google Scholar 

  34. Daniels, M. J., Wang, Y., Lee, M. & Venkitaraman, A. R. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306, 876–879 (2004).

    Article  CAS  Google Scholar 

  35. Lilly, M. A. & Duronio, R. J. New insights into cell cycle control from the Drosophila endocycle. Oncogene 24, 2765–2775 (2005).

    Article  CAS  Google Scholar 

  36. Van den Heuvel, S. & Dyson, N. J. Conserved functions of the pRB and E2F families. Nat. Rev. Mol. Cell Biol. 9, 713–724 (2008).

    Article  CAS  Google Scholar 

  37. Edgar, B. A. & Orr-Weaver, T. L. Endoreplication cell cycles: more for less. Cell 105, 297–306 (2001).

    Article  CAS  Google Scholar 

  38. Chen, H. et al. Canonical and atypical E2Fs regulate the mammalian endocycle. Nat. Cell Biol.http://dx.doi.org/10.1038/ncb2595 (2012).

  39. Lammens, T. et al. Atypical E2F activity restrains APC/CCCS52A2 functionobligatory for endocycle onset. Proc. Natl Acad. Sci. USA 105, 14721–14726 (2008).

    Article  CAS  Google Scholar 

  40. Diril, M. K. et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl Acad. Sci. USA 109, 3826–3831 (2012).

    Article  CAS  Google Scholar 

  41. Weigmann, K., Cohen, S. M. & Lehner, C. F. Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. Development 124, 3555–3563 (1997).

    CAS  PubMed  Google Scholar 

  42. Maqbool, S. B. et al. Dampened activity of E2F1–DP and Myb–MuvB transcription factors in Drosophila endocycling cells. J. Cell Sci. 123, 4095–4106 (2010).

    Article  CAS  Google Scholar 

  43. Weng, L., Zhu, C., Xu, J. & Du, W. Critical role of active repression by E2F and Rb proteins in endoreplication during Drosophila development. EMBO J. 22, 3865–3875 (2003).

    Article  CAS  Google Scholar 

  44. Shibutani, S. T. et al. Intrinsic negative cell cycle regulation provided by PIP Box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev. Cell 15, 890–900 (2008).

    Article  CAS  Google Scholar 

  45. del Pozo, J. C., Diaz-Trivino, S., Cisneros, N. & Gutierrez, C. The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell Online 18, 2224–2235 (2006).

    Article  CAS  Google Scholar 

  46. Zielke, N. et al. Control of Drosophila endocycles by E2F and CRL4CDT2. Nature 480, 123–127 (2011).

    Article  CAS  Google Scholar 

  47. Ouseph, M. et al. Atypical E2F repressors and activators coordinate placental development. Dev. Cell 22, 849–862 (2012).

    Article  CAS  Google Scholar 

  48. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  49. Kester, M. H. A. et al. Large induction of type III deiodinase expression after partial hepatectomy in the regenerating mouse and rat liver. Endocrinology 150, 540–545 (2009).

    Article  CAS  Google Scholar 

  50. Janzen, J. W. G. et al. Immunohistochemical localization of carbamoyl-phosphate synthetase (ammonia) in adult rat liver; evidence for a heterogeneous distribution. J. Histochem. Cytochem. 32, 557–564 (1984).

    Article  Google Scholar 

  51. Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Gen. Res. 13, 2129–2141 (2003).

    Article  CAS  Google Scholar 

  52. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protocols 4, 44–57 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Medema, R. Klompmaker (both at the Department of Medical Oncology, University Medical Center Utrecht, Utrecht, and The Netherlands Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands), E. Cuppen (Hubrecht Institute, University Medical Center Utrecht, Cancer Genomics Center, Utrecht, The Netherlands), G. Leone (Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, USA), V. Guyrev, J. Mul (both at Hubrecht Institute, as above) and J. Mol (Department of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands) for reagents, mice, technical assistance, bioinformatic support, and advice, and W. Bakker and B. Weijts for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.K.P. carried out all in vivo experiments assisted by S.N., P.C.J.T. and M.J.M.T. B.W. performed the microarray analysis and the ChIP assays. E.v.L. and P.W.A.C. performed the qPCR analysis. W.H.L. performed the zonation analysis. S.K.P., B.W. and A.d.B designed the experiments and wrote the paper. All authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Alain de Bruin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 392 kb)

Supplementary Table 1

Supplementary Information (XLS 27 kb)

Supplementary Table 2

Supplementary Information (XLS 760 kb)

Supplementary Table 3

Supplementary Information (XLS 47 kb)

Supplementary Table 4

Supplementary Information (XLS 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandit, S., Westendorp, B., Nantasanti, S. et al. E2F8 is essential for polyploidization in mammalian cells. Nat Cell Biol 14, 1181–1191 (2012). https://doi.org/10.1038/ncb2585

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing