Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of neuronal plasticity and fear by a dynamic change in PAR1–G protein coupling in the amygdala

Abstract

Fear memories are acquired through neuronal plasticity, an orchestrated sequence of events regulated at circuit and cellular levels. The conventional model of fear acquisition assumes unimodal (for example, excitatory or inhibitory) roles of modulatory receptors in controlling neuronal activity and learning. Contrary to this view, we show that protease-activated receptor-1 (PAR1) promotes contrasting neuronal responses depending on the emotional status of an animal by a dynamic shift between distinct G protein-coupling partners. In the basolateral amygdala of fear-naive mice PAR1 couples to Gαq/11 and Gαo proteins, while after fear conditioning coupling to Gαo increases. Concurrently, stimulation of PAR1 before conditioning enhanced, but afterwards it inhibited firing of basal amygdala neurons. An initial impairment of the long-term potentiation (LTP) in PAR1-deficient mice was transformed into an increase in LTP and enhancement of fear after conditioning. These effects correlated with more frequent 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) receptor-mediated miniature post synaptic events and increased neuronal excitability. Our findings point to experience-specific shifts in PAR1–G protein coupling in the amygdala as a novel mechanism regulating neuronal excitability and fear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rosenbaum DM, Rasmussen SG, Kobilka BK . The structure and function of G-protein-coupled receptors. Nature 2009; 459: 356–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilchrist A . Modulating G-protein-coupled receptors: from traditional pharmacology to allosterics. Trends Pharmacol Sci 2007; 28: 431–437.

    Article  CAS  PubMed  Google Scholar 

  3. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM et al. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 2010; 463: 108–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 2011; 469: 175–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH et al. Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 2011; 469: 236–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K . Temporally precise in vivo control of intracellular signalling. Nature 2009; 458: 1025–1029.

    Article  CAS  PubMed  Google Scholar 

  7. Vu TK, Hung DT, Wheaton VI, Coughlin SR . Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  8. Soh UJ, Dores MR, Chen B, Trejo J . Signal transduction by protease-activated receptors. Br J Pharmacol 2010; 160: 191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Attwood BK, Bourgognon JM, Patel S, Mucha M, Schiavon E, Skrzypiec AE et al. Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature 2011; 473: 372–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, Strickland S . Tissue plasminogen activator promotes the effects of corticotropin-releasing factor on the amygdala and anxiety-like behavior. Proc Natl Acad Sci USA 2004; 101: 16345–16350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S . Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat Neurosci 2003; 6: 168–174.

    Article  CAS  PubMed  Google Scholar 

  12. Pawlak R, Rao BS, Melchor JP, Chattarji S, McEwen B, Strickland S . Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc Natl Acad Sci USA 2005; 102: 18201–18206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Almonte AG, Hamill CE, Chhatwal JP, Wingo TS, Barber JA, Lyuboslavsky PN et al. Learning and memory deficits in mice lacking protease activated receptor-1. Neurobiol Learn Mem 2007; 88: 295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horii Y, Yamasaki N, Miyakawa T, Shiosaka S . Increased anxiety-like behavior in neuropsin (kallikrein-related peptidase 8) gene-deficient mice. Behav Neurosci 2008; 122: 498–504.

    Article  PubMed  Google Scholar 

  15. Maggio N, Shavit E, Chapman J, Segal M . Thrombin induces long-term potentiation of reactivity to afferent stimulation and facilitates epileptic seizures in rat hippocampal slices: toward understanding the functional consequences of cerebrovascular insults. J Neurosci 2008; 28: 732–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsumoto-Miyai K, Ninomiya A, Yamasaki H, Tamura H, Nakamura Y, Shiosaka S . NMDA-dependent proteolysis of presynaptic adhesion molecule L1 in the hippocampus by neuropsin. J Neurosci 2003; 23: 7727–7736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Samson AL, Medcalf RL . Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron 2006; 50: 673–678.

    Article  CAS  PubMed  Google Scholar 

  18. Luo W, Wang Y, Reiser G . Protease-activated receptors in the brain: receptor expression, activation, and functions in neurodegeneration and neuroprotection. Brain Res Rev 2007; 56: 331–345.

    Article  CAS  PubMed  Google Scholar 

  19. Traynelis SF, Trejo J . Protease-activated receptor signaling: new roles and regulatory mechanisms. Curr Opin Hematol 2007; 14: 230–235.

    Article  CAS  PubMed  Google Scholar 

  20. Howell DC, Johns RH, Lasky JA, Shan B, Scotton CJ, Laurent GJ et al. Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis. Am J Pathol 2005; 166: 1353–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ . Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 1994; 79: 59–68.

    Article  CAS  PubMed  Google Scholar 

  22. Salah-Uddin H, Thomas DR, Davies CH, Hagan JJ, Wood MD, Watson JM et al. Pharmacological assessment of m1 muscarinic acetylcholine receptor-gq/11 protein coupling in membranes prepared from postmortem human brain tissue. J Pharmacol Exp Ther 2008; 325: 869–874.

    Article  CAS  PubMed  Google Scholar 

  23. Akam EC, Challiss RA, Nahorski SR . G(q/11) and G(i/o) activation profiles in CHO cells expressing human muscarinic acetylcholine receptors: dependence on agonist as well as receptor-subtype. Br J Pharmacol 2001; 132: 950–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Washburn MS, Moises HC . Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. J Neurosci 1992; 12: 4066–4079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Junge CE, Lee CJ, Hubbard KB, Zhang Z, Olson JJ, Hepler JR et al. Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Exp Neurol 2004; 188: 94–103.

    Article  CAS  PubMed  Google Scholar 

  26. Striggow F, Riek-Burchardt M, Kiesel A, Schmidt W, Henrich-Noack P, Breder J et al. Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur J Neurosci 2001; 14: 595–608.

    Article  CAS  PubMed  Google Scholar 

  27. Amorapanth P, LeDoux JE, Nader K . Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nat Neurosci 2000; 3: 74–79.

    Article  CAS  PubMed  Google Scholar 

  28. Doyere V, Schafe GE, Sigurdsson T, LeDoux JE . Long-term potentiation in freely moving rats reveals asymmetries in thalamic and cortical inputs to the lateral amygdala. Eur J Neurosci 2003; 17: 2703–2715.

    Article  PubMed  Google Scholar 

  29. Goosens KA, Maren S . Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn Mem 2001; 8: 148–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang YY, Martin KC, Kandel ER . Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 2000; 20: 6317–6325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A . Amygdala inhibitory circuits and the control of fear memory. Neuron 2009; 62: 757–771.

    Article  CAS  PubMed  Google Scholar 

  32. Hong I, Kim J, Lee J, Park S, Song B, Kim J et al. Reversible plasticity of fear memory-encoding amygdala synaptic circuits even after fear memory consolidation. PLoS One 2011; 6: e24260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neves SR, Ram PT, Iyengar R . G protein pathways. Science 2002; 296: 1636–1639.

    Article  CAS  PubMed  Google Scholar 

  34. Strittmatter SM, Valenzuela D, Kennedy TE, Neer EJ, Fishman MC . G0 is a major growth cone protein subject to regulation by GAP-43. Nature 1990; 344: 836–841.

    Article  CAS  PubMed  Google Scholar 

  35. Hille B . Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 1994; 17: 531–536.

    Article  CAS  PubMed  Google Scholar 

  36. Milligan G . Principles: extending the utility of [35S]GTP gamma S binding assays. Trends Pharmacol Sci 2003; 24: 87–90.

    Article  CAS  PubMed  Google Scholar 

  37. Taussig R, Tang WJ, Hepler JR, Gilman AG . Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 1994; 269: 6093–6100.

    CAS  PubMed  Google Scholar 

  38. Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 2003; 38: 611–624.

    Article  CAS  PubMed  Google Scholar 

  39. Watt AJ, Sjostrom PJ, Hausser M, Nelson SB, Turrigiano GG . A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat Neurosci 2004; 7: 518–524.

    Article  CAS  PubMed  Google Scholar 

  40. Kenakin T . Biased agonism. F1000 Biol Rep 2009; 1: 87.

    PubMed  PubMed Central  Google Scholar 

  41. Daaka Y, Luttrell LM, Lefkowitz RJ . Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997; 390: 88–91.

    Article  CAS  PubMed  Google Scholar 

  42. Kobilka BK, Deupi X . Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 2007; 28: 397–406.

    Article  CAS  PubMed  Google Scholar 

  43. Russo A, Soh UJ, Trejo J . Proteases display biased agonism at protease-activated receptors: location matters!. Mol Interv 2009; 9: 87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, Bruno M et al. Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature 2005; 436: 1166–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blank T, Nijholt I, Grammatopoulos DK, Randeva HS, Hillhouse EW, Spiess J . Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning. J Neurosci 2003; 23: 700–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bourtchouladze R, Patterson SL, Kelly MP, Kreibich A, Kandel ER, Abel T . Chronically increased Gsalpha signaling disrupts associative and spatial learning. Learn Mem 2006; 13: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kelly MP, Stein JM, Vecsey CG, Favilla C, Yang X, Bizily SF et al. Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Galphas, a G-protein subunit genetically linked to schizophrenia. Mol Psychiatry 2009; 14: 347.

    Article  Google Scholar 

  48. Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF . Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 2000; 20: 4582–4595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rajagopal S, Rajagopal K, Lefkowitz RJ . Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 2010; 9: 373–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Medical Research Council project grant (G0500231/73852), and a Marie Curie Excellence grant (MEXT-CT-2006-042265 from European Commission) to Robert Pawlak. We acknowledge the support of ECMNet (COST BM1001). We are obliged to Dr Marshall Runge for his gift of the anti-PAR1 antibody, and to Drs Shaun Coughlin and Rachel Chambers for PAR1−/− mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Pawlak.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgognon, JM., Schiavon, E., Salah-Uddin, H. et al. Regulation of neuronal plasticity and fear by a dynamic change in PAR1–G protein coupling in the amygdala. Mol Psychiatry 18, 1136–1145 (2013). https://doi.org/10.1038/mp.2012.133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.133

Keywords

This article is cited by

Search

Quick links