Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group

Abstract

Recurrent molecular markers have been routinely used in acute myeloid leukemia (AML) for risk assessment at diagnosis, whereas their post-induction monitoring still represents a debated issue. We evaluated the prognostic value and biological impact of minimal residual disease (MRD) and of the allelic ratio (AR) of FLT3-internal-tandem duplication (ITD) in childhood AML. We retrospectively screened 494 children with de novo AML for FLT3-ITD mutation, identifying 54 harboring the mutation; 51% of them presented high ITD-AR at diagnosis and had worse event-free survival (EFS, 19.2 versus 63.5% for low ITD-AR, <0.05). Forty-one percent of children with high levels of MRD after the 1st induction course, measured by a patient-specific real-time-PCR, had worse EFS (22.2 versus 59.4% in low-MRD patients, P<0.05). Next, we correlated these parameters with gene expression, showing that patients with high ITD-AR or persistent MRD had characteristic expression profiles with deregulated genes involved in methylation and acetylation. Moreover, patients with high CyclinA1 expression presented an unfavorable EFS (20.3 versus 51.2% in low CyclinA1 group, P<0.01). Our results suggest that ITD-AR levels and molecular MRD should be considered in planning clinical management of FLT3-ITD patients. Different transcriptional activation of epigenetic and oncogenic profiles may explain variability in outcome among these patients, for whom novel therapeutic approaches are desirable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Pigazzi M, Masetti R, Bresolin S, Beghin A, Di Meglio A, Gelain S et al. MLL partner genes drive distinct gene expression profiles and genomic alterations in pediatric acute myeloid leukemia: an AIEOP study. Leukemia 2011; 25: 560–563.

    Article  CAS  PubMed  Google Scholar 

  2. Pigazzi M, Manara E, Bisio V, Aveic S, Masetti R, Menna G et al. Screening of novel genetic aberrations in pediatric acute myeloid leukemia: a report from the AIEOP AML-2002 study group. Blood 2012; 120: 3860–3862.

    Article  CAS  PubMed  Google Scholar 

  3. Sandahl JD, Coenen Ea, Forestier E, Harbott J, Johansson B, Kerndrup G et al. T(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica 2014; 99: 865–872.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Masetti R, Pigazzi M, Togni M, Astolfi A, Indio V, Manara E et al. CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood 2013; 121: 3469–3472.

    Article  CAS  PubMed  Google Scholar 

  5. Gruber Ta, Larson Gedman A, Zhang J, Koss CS, Marada S, Ta HQ et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 2012; 22: 683–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pession A, Masetti R, Rizzari C, Putti MC, Casale F, Fagioli F et al. Results of the AIEOP AML 2002/01 multicenter prospective trial for the treatment of children with acute myeloid leukemia. Blood 2013; 122: 170–178.

    Article  CAS  PubMed  Google Scholar 

  7. Grimwade D, Freeman SD . Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for ‘Prime Time’? Blood 2014; 124: 222–233.

    Article  Google Scholar 

  8. Takahashi S . Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J Hematol Oncol 2011; 4: 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    Article  CAS  PubMed  Google Scholar 

  10. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Müller C et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914.

    CAS  PubMed  Google Scholar 

  11. Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999; 33: 525–529.

    Article  CAS  PubMed  Google Scholar 

  12. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  13. Abu-Duhier FM, Goodeve AC, Wilson GA, Gari MA, Peake IR, Rees DC et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 2000; 111: 190–195.

    Article  CAS  PubMed  Google Scholar 

  14. Kottaridis PD . The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  15. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  16. Levis M, Small D . FLT3: ITDoes matter in leukemia. Leukemia 2003; 17: 1738–1752.

    Article  CAS  PubMed  Google Scholar 

  17. Meshinchi S, Alonzo Ta, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D et al. Clinical implications of FLT3 mutations in pediatric AML. Blood 2006; 108: 3654–3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daver N, Cortes J, Ravandi F, Patel KP, Burger Ja, Konopleva M et al. Review article secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood 2015; 125: 10–20.

    Article  Google Scholar 

  19. Kern W, Haferlach T, Schoch C, Löffler H, Gassmann W, Sauerland MC et al. Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: data from the German AMLCooperative Group (AMLCG) 1992 Trial. Blood 2003; 101: 64–70.

    Article  CAS  PubMed  Google Scholar 

  20. Chen X, Xie H, Wood BL, Walter RB, Pagel JM, Becker PS et al. Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia. J Clin Oncol 2015; 33: 1268–1264.

    Google Scholar 

  21. Schlenk RF, Kayser S, Bullinger L, Kobbe G, Casper J, Ringhoffer M et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 2014; 124: 3441–3449.

    Article  CAS  PubMed  Google Scholar 

  22. Meshinchi S, Stirewalt DL, Alonzo TA, Boggon TJ, Gerbing RB, Rocnik JL et al. Structural and numerical variation of FLT3 / ITD in pediatric AML Brief report Structural and numerical variation of FLT3 / ITD in pediatric AML. Blood 2012; 111: 4930–4933.

    Article  Google Scholar 

  23. Locatelli F, Masetti R, Rondelli R, Zecca M, Fagioli F, Rovelli A et al. Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the aieop AML-2002/01 study. Bone Marrow Transplant 2014; 50: 181–188.

    Article  PubMed  Google Scholar 

  24. Pigazzi M, Manara E, Bresolin S, Tregnago C, Beghin A, Baron E et al. MicroRNA-34b promoter hypermethylation induces CREB overexpression and contributes to myeloid transformation. Haematologica 2013; 98: 602–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao M, Sun J, Zhao Z . TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res 2013; 41: D970–D976.

    Article  CAS  PubMed  Google Scholar 

  26. Zhan M, Riordon DR, Yan B, Tarasova YS, Bruweleit S, Tarasov KV et al. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells. PLoS ONE 2012; 7: e42350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paganin M, Zecca M, Fabbri G, Polato K, Biondi A, Rizzari C et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia 2008; 22: 2193–2200.

    Article  CAS  PubMed  Google Scholar 

  28. Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y, Flora R et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol 2009; 27: 3650–3658.

    Article  CAS  PubMed  Google Scholar 

  29. Pigazzi M, Manara E, Buldini B, Beqiri V, Bisio V, Tregnago C et al. Minimal residual disease monitored after induction therapy by RQ-PCR can contribute to tailor treatment of patients with t(8;21) RUNX1-RUNX1T1 rearrangement. Haematologica 2015; 100: e99–101.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Inaba H, Coustan-Smith E, Cao X, Pounds SB, Shurtleff Sa, Wang KY et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol 2012; 30: 3625–3632.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kayser S, Schlenk RF, Grimwade D, Yosuico VE, Walter RB . Evidence-based focused review minimal residual disease—directed therapy in acute myeloid leukemia. Blood 2015; 125: 2331–2336.

    Article  CAS  PubMed  Google Scholar 

  32. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  33. Zwaan CM, Kolb Ea, Reinhardt D, Abrahamsson J, Adachi S, Aplenc R et al. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J Clin Oncol 2015; 33: 2949–2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 2014; 123: 2343–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cauchy P, James SR, Zacarias-Cabeza J, Ptasinska A, Imperato MR, Assi SA et al. Chronic FLT3-ITD signaling in acute myeloid leukemia is connected to a specific chromatin signature. Cell Rep 2015; 12: 821–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bali P, George P, Cohen P, Tao J, Guo F, Sigua C et al. Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin Cancer Res 2004; 10: 4991–4997.

    Article  CAS  PubMed  Google Scholar 

  37. Nishioka C, Ikezoe T, Yang J, Takeuchi S, Phillip Koeffler H, Yokoyama A . MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells. Leuk Res 2008; 32: 1382–1392.

    Article  CAS  PubMed  Google Scholar 

  38. Pietschmann K, Bolck HA, Buchwald M, Spielberg S, Polzer H, Spiekermann K et al. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors. Mol Cancer Ther 2012; 11: 2373–2383.

    Article  CAS  PubMed  Google Scholar 

  39. Liao C, Wang XY, Wei HQ, Li SQ, Merghoub T, Pandolfi PP et al. Altered myelopoiesis and the development of acute myeloid leukemia in transgenic mice overexpressing cyclin A1. Proc Natl Acad Sci USA 2001; 98: 6853–6858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Zhu X, Gu J, Hu H, Dong D, Yao J et al. Anti-miR-21 oligonucleotide enhances chemosensitivity of leukemic HL60 cells to arabinosylcytosine by inducing apoptosis. Hematology 2010; 15: 215–221.

    Article  PubMed  Google Scholar 

  41. Hong L, Han Y, Zhang Y, Zhang H, Zhao Q, Wu K et al. MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opin Ther Targets 2013; 17: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  42. Rommer A, Steinleitner K, Hackl H, Schneckenleithner C, Engelmann M, Scheideler M et al. Overexpression of primary microRNA 221/222 in acute myeloid leukemia. BMC Cancer 2013; 13: 364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G . miR221/222 in cancer: their role in tumor progression and response to therapy. Curr. Mol. Med. 2012; 12: 27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ekberg J, Landberg G, Holm C, Richter J, Wolgemuth DJ, Persson JL . Regulation of the cyclin A1 protein is associated with its differential subcellular localization in hematopoietic and leukemic cells. Oncogene 2004; 23: 9082–9089.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CARIPARO Istituto di Ricerca Pediatrica-Fondazione Città della Speranza to GB, EM, MZ; Università degli Studi di Padova to CT, VB, BB, MP, and by the special grant 5 × 1.000 of AIRC (Associazione Italiana Ricerca sul Cancro) to FL.

Author contributions

EM, CT, VB, MF, MZ, BB and GC performed experiments; KP, RM, GC, BB, RR, GM, FG, AB, AP, FL, PM and GB collected samples in AIEOP centers; EM, RR and RM performed the statistical analysis; EM, GB, FL, MP designed the research, analyzed and interpreted data, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Basso.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manara, E., Basso, G., Zampini, M. et al. Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group. Leukemia 31, 18–25 (2017). https://doi.org/10.1038/leu.2016.177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.177

This article is cited by

Search

Quick links