Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Mutational profile of childhood myeloproliferative neoplasms

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Moulard O, Mehta J, Fryzek J, Olivares R, Iqbal U, Mesa RA . Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol 2014; 92: 289–297.

    Article  Google Scholar 

  2. Hasle H . Incidence of essential thrombocythaemia in children. Br J Haematol 2000; 110: 751.

    Article  CAS  Google Scholar 

  3. Giona F, Teofili L, Moleti ML, Martini M, Palumbo G, Amendola et al. Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: clinical and biologic features, treatment, and long-term outcome. Blood 2012; 119: 2219–2227.

    Article  CAS  Google Scholar 

  4. Kucine N, Chastain KM, Mahler MB, Bussel JB . Primary thrombocytosis in children. Haematologica 2014; 99: 620–628.

    Article  CAS  Google Scholar 

  5. Randi ML, Putti MC, Scapin M, Pacquola E, Tucci F, Micalizzi C et al. Pediatric patients with essential thrombocythemia are mostly polyclonal and V617FJAK2 negative. Blood 2006; 108: 3600–3602.

    Article  CAS  Google Scholar 

  6. Teofili L, Giona F, Martini M, Cenci T, Guidi F, Torti L et al. Markers of myeloproliferative diseases in childhood polycythemia vera and essential thrombocythemia. J Clin Oncol 2007; 25: 1048–1053.

    Article  CAS  Google Scholar 

  7. Langabeer SE, Haslam K, McMahon C . CALR mutations are rare in childhood essential thrombocythemia. Pediatr Blood Cancer 2014; 61: 1523.

    Article  Google Scholar 

  8. Giona F, Teofili L, Capodimonti S, Laurino M, Martini M, Marzella D et al. CALR mutations in patients with essential thrombocythemia diagnosed in childhood and adolescence. Blood 2014; 123: 3677–3679.

    Article  CAS  Google Scholar 

  9. Langabeer SE, Haslam K, McMahon C . Distinct driver mutation profiles of childhood and adolescent essential thrombocythemia. Pediatr Blood Cancer 2014; 62: 175–176.

    Article  Google Scholar 

  10. Randi ML, Geranio G, Bertozzi I, Micalizzi C, Ramenghi U, Tucci F et al. Are all cases of paediatric essential thrombocythaemia really myeloproliferative neoplasms? Analysis of a large cohort. Br J Haematol 2015; 169: 584–589.

    Article  CAS  Google Scholar 

  11. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  Google Scholar 

  12. Tefferi A, Thiele J, Vannucchi AM, Barbui T . An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia 2014; 28: 1407–1413.

    Article  CAS  Google Scholar 

  13. Fu R, Zhang L, Yang R . Paediatric essential thrombocythaemia: clinical and molecular features, diagnosis and treatment. Br J Haematol 2013; 163: 295–302.

    Article  Google Scholar 

  14. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014; 123: 2220–2228.

    Article  CAS  Google Scholar 

  15. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.

    Article  CAS  Google Scholar 

  16. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–2405.

    Article  CAS  Google Scholar 

  17. Konieczna I, Horvath E, Wang H, Lindsey S, Saberwal G, Bei L et al. Constitutive activation of SHP2 in mice cooperates with ICSBP deficiency to accelerate progression to acute myeloid leukemia. J Clin Invest 2008; 118: 853–867.

    CAS  Google Scholar 

  18. Seubert N, Royer Y, Staerk J, Kubatzky KF, Moucadel V, Krishnakumar S et al. Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. Mol Cell 2003; 12: 1239–1250.

    Article  CAS  Google Scholar 

  19. Hilton DJ, Watowich SS, Katz L, Lodish HF . Saturation mutagenesis of the WSXWS motif of the erythropoietin receptor. J Biol Chem 1996; 271: 4699–4708.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stefan Constantinescu for helpful advice on the candidate mutations in EPOR. This work was funded by grants 310000-120724/1 and 32003BB_135712/1 from the Swiss National Science Foundation and the Swiss Cancer League (KLS-2950-02-2012) to RCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C Skoda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karow, A., Nienhold, R., Lundberg, P. et al. Mutational profile of childhood myeloproliferative neoplasms. Leukemia 29, 2407–2409 (2015). https://doi.org/10.1038/leu.2015.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.205

This article is cited by

Search

Quick links