Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Concise Review
  • Published:

MYD88 and beyond: novel opportunities for diagnosis, prognosis and treatment in Waldenström’s Macroglobulinemia

Abstract

Waldenström’s Macroglobulinemia (WM) is a rare disease of the elderly with a median age of 63–68 years at diagnosis. Despite recent progress in biological insights and therapeutics, WM remains clinically challenging to diagnose and is difficult to manage with significant morbidity and lack of established curative therapies. Recently, the use of whole-genome sequencing has helped to identify a highly recurrent somatic mutation, myeloid differentiation factor 88 [MYD88] L265P in WM. This has fueled major interest in the field and as newer evidence accumulates, it is clear that that discovery of MYD88 L265P mutation may represent an important breakthrough in understanding the pathogenesis of WM and lymphoproliferative disorders. Recent scientific work in this field has also guided the identification of new targets such as CXCR4 and PI3K-delta that may have major implications in the future treatment of WM. This review discusses the role of MYD88 L265P mutations as well as targets beyond MYD88 in the setting of pathogenesis and development of future rational therapeutic trials focusing on patients diagnosed with WM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Groves FD, Travis LB, Devesa SS, Ries LA, Fraumeni JF Jr . Waldenstrom's macroglobulinemia: incidence patterns in the United States 1988-1994. Cancer 1998; 82: 1078–1081.

    Article  CAS  Google Scholar 

  2. Braggio E, Philipsborn C, Novak A, Hodge L, Ansell S, Fonseca R . Molecular pathogenesis of Waldenstrom's macroglobulinemia. Haematologica 2012; 97: 1281–1290.

    Article  CAS  Google Scholar 

  3. Buske C, Leblond V . How to manage Waldenstrom's macroglobulinemia. Leukemia 2013; 27: 762–772.

    Article  CAS  Google Scholar 

  4. Leleu X, Eeckhoute J, Jia X, Roccaro AM, Moreau AS, Farag M et al. Targeting NF-kappaB in Waldenstrom macroglobulinemia. Blood 2008; 111: 5068–5077.

    Article  CAS  Google Scholar 

  5. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med 2012; 367: 826–833.

    Article  CAS  Google Scholar 

  6. Kawai T, Akira S . Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008; 1143: 1–20.

    Article  CAS  Google Scholar 

  7. Warner N, Nunez G . MyD88: a critical adaptor protein in innate immunity signal transduction. J Immunol 2013; 190: 3–4.

    Article  CAS  Google Scholar 

  8. Cao Y, Hunter ZR, Liu X, Yang G, Tripsas CK, Manning R et alSomatic Activating Mutations In CXCR4 Are Common In Patients With Waldenstrom’s Macroglobulinemia, and Their Expression In WM Cells Promotes Resistance To Ibrutinib Blood (ASH Annual Meeting Abstracts), December 2013; 4424 2013.

  9. Yang G, Xu L, Zhou Y, Xu L, Cao Y, Manning R et alPI3K/AKT Pathway Is Activated By MYD88 L265P and Use Of PI3K-Delta Inhibitors Induces Robust Tumor Cell Killing In Waldenstrom’s Macroglobulinemia Blood (ASH Annual Meeting Abstracts), December 2013; 4255.

  10. Lord KA, Hoffman-Liebermann B, Liebermann DA . Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 1990; 5: 1095–1097.

    CAS  Google Scholar 

  11. Muzio M, Ni J, Feng P, Dixit VM . IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 1997; 278: 1612–1615.

    Article  CAS  Google Scholar 

  12. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z . MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997; 7: 837–847.

    Article  CAS  Google Scholar 

  13. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9: 143–150.

    Article  CAS  Google Scholar 

  14. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 2008; 321: 691–696.

    Article  CAS  Google Scholar 

  15. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr . A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394–397.

    Article  CAS  Google Scholar 

  16. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S . Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999; 11: 115–122.

    Article  CAS  Google Scholar 

  17. Suzuki N, Chen NJ, Millar DG, Suzuki S, Horacek T, Hara H et al. IL-1 receptor-associated kinase 4 is essential for IL-18-mediated NK and Th1 cell responses. J Immunol 2003; 170: 4031–4035.

    Article  CAS  Google Scholar 

  18. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 2002; 416: 750–756.

    Article  CAS  Google Scholar 

  19. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470: 115–119.

    Article  CAS  Google Scholar 

  20. Jeelall YS, Horikawa K . Oncogenic MYD88 mutation drives Toll pathway to lymphoma. Immunol Cell Biol 2011; 89: 659–660.

    Article  Google Scholar 

  21. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood 2013; 122: 1222–1232.

    Article  CAS  Google Scholar 

  22. Gachard N, Parrens M, Soubeyran I, Petit B, Marfak A, Rizzo D et al. IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenstrom macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia 2013; 27: 183–189.

    Article  CAS  Google Scholar 

  23. Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X et al. MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 2013; 121: 2051–2058.

    Article  CAS  Google Scholar 

  24. Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom's macroglobulinemia and related lymphoid neoplasms. Blood 2013; 121: 2522–2528.

    Article  CAS  Google Scholar 

  25. Landgren O, Staudt L . MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med 2012; 367: 2255–2256, ; author reply 6-7.

    Article  CAS  Google Scholar 

  26. Jimenez C, Sebastian E, Chillon MC, Giraldo P, Mariano Hernandez J, Escalante F et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstrom's macroglobulinemia. Leukemia 2013; 27: 1722–1728.

    Article  CAS  Google Scholar 

  27. Ansell SM HL, Secreto F, Manske M, Braggio E, Price-Troska T et alActivation Of TAK1 By MYD88 L265P Drives Malignant B Cell Growth In Non-Hodgkin Lymphoma Blood (ASH Annual Meeting Abstracts) 2013; 120: Abstract 245.

  28. Fonseca R, Braggio E . The MYDas touch of next-gen sequencing. Blood 2013; 121: 2373–2374.

    Article  CAS  Google Scholar 

  29. Cao Y, Xu L, Liu X, Zhou Y, Yang G, Patterson CJ et alWhole Genome Sequencing Identifies Recurring Somatic Mutations in the C-Terminal Domain of CXCR4, Including a Gain of Function Mutation in Waldenstrom’s Macroglobinemia Blood (ASH Annual Meeting Abstracts) 2012; 120: Abstract 27152012.

  30. Hunter Z, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al. The genomic landscape of Waldenstom's Macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 2014; 123: 1637–1646.

    Article  CAS  Google Scholar 

  31. Schop RF, Kuehl WM, Van Wier SA, Ahmann GJ, Price-Troska T, Bailey RJ et al. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 2002; 100: 2996–3001.

    Article  CAS  Google Scholar 

  32. Treon SP, Hunter ZR . A new era for Waldenstrom macroglobulinemia: MYD88 L265P. Blood 2013; 121: 4434–4436.

    Article  CAS  Google Scholar 

  33. Pangalis GA, Kyrtsonis MC, Kontopidou FN, Vassilakopoulos TP, Siakantaris MP, Dimopoulou MN et al. Differential diagnosis of Waldenstrom's macroglobulinemia from other low-grade B-cell lymphoproliferative disorders. Semin Oncol 2003; 30: 201–205.

    Article  Google Scholar 

  34. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 2013; 31: 88–94.

    Article  CAS  Google Scholar 

  35. Xu L, Hunter Z, Yang G, Zhou Y, Liu X, Cao Y et alDetection Of MYD88 L265P In Peripheral Blood Of Patients With Waldenström's Macroglobulinemia and IgM Monoclonal Gammopathy Of Undetermined Significance Blood (ASH Annual Meeting Abstracts), December 2013; 3024 2013.

  36. Ngo HT, Leleu X, Lee J, Jia X, Melhem M, Runnels J et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 2008; 112: 150–158.

    Article  CAS  Google Scholar 

  37. Poulain S, Roumier C, Decambron A, Renneville A, Herbaux C, Bertrand E et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood 2013; 121: 4504–4511.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Intramural Research Program of the National Cancer Institute of the National Institutes of Health supported this work.

Author Contributions

NT and OL equally contributed towards writing the manuscript. Both authors approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Landgren.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landgren, O., Tageja, N. MYD88 and beyond: novel opportunities for diagnosis, prognosis and treatment in Waldenström’s Macroglobulinemia. Leukemia 28, 1799–1803 (2014). https://doi.org/10.1038/leu.2014.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.88

This article is cited by

Search

Quick links