Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Lymphoma

What is new in the treatment of Waldenstrom macroglobulinemia?

Abstract

Waldenstrom macroglobulinemia (WM) is a rare type of non-Hodgkin lymphoma. The diagnosis of WM is established by the presence of lymphoplasmacytic lymphoma in the bone marrow or other organs, a monoclonal IgM paraproteinemia and the recurrent MYD88 L265P somatic mutation. Some patients with WM can be asymptomatic, in which case treatment is not indicated. However, most patients with WM will become symptomatic during the course of the disease, due to anemia, hyperviscosity, neuropathy, or other processes, necessitating therapy. Current treatment options for symptomatic WM patients include alkylating agents, proteasome inhibitors and anti-CD20 monoclonal antibodies. The approval of the oral Bruton tyrosine kinase (BTK) inhibitor ibrutinib alone and in combination with rituximab has expanded the treatment options for WM patients. The present Perspective would focus on exciting treatment strategies under development for WM patients, such as proteasome inhibitors (e.g., ixazomib), BTK inhibitors (e.g., acalabrutinib, zanubrutinib, vecabrutinib), BCL2 inhibitors (e.g., venetoclax), and anti-CXCR4 antibodies (e.g., ulocuplumab), among others. It is certainly an exciting time for WM therapy development with novel and promising treatment options in the horizon.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Swerdlow SH, Cook JR, Sohani AR, Pileri SA, Harris NL, Jaffe ES, et al. Lymphoplasmacytic lymphoma. In: Swerdlow SH et al., editors. WHO classification of tumours of hematopoietic and lymphoid tissues. Lyon: IARC; 2017. p. 232–5.

  2. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367:826–33.

    Article  CAS  PubMed  Google Scholar 

  3. Jimenez C, Sebastian E, Chillon MC, Giraldo P, Mariano Hernandez J, Escalante F, et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstrom’s macroglobulinemia. Leukemia. 2013;27:1722–8.

    Article  CAS  PubMed  Google Scholar 

  4. Poulain S, Roumier C, Decambron A, Renneville A, Herbaux C, Bertrand E, et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood. 2013;121:4504–11.

    Article  CAS  PubMed  Google Scholar 

  5. Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood. 2013;121:2522–8.

    Article  CAS  PubMed  Google Scholar 

  6. Treon SP, Gustine J, Xu L, Manning RJ, Tsakmaklis N, Demos M, et al. MYD88 wild-type Waldenstrom Macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival. Br J Haematol. 2018;180:374–80.

    Article  CAS  PubMed  Google Scholar 

  7. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46.

    Article  CAS  PubMed  Google Scholar 

  8. Roccaro AM, Sacco A, Jimenez C, Maiso P, Moschetta M, Mishima Y, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123:4120–31.

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt J, Federmann B, Schindler N, Steinhilber J, Bonzheim I, Fend F, et al. MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases with high disease activity. Br J Haematol. 2015;169:795–803.

    Article  CAS  PubMed  Google Scholar 

  10. Poulain S, Roumier C, Venet-Caillault A, Figeac M, Herbaux C, Marot G, et al. Genomic landscape of CXCR4 mutations in waldenstrom macroglobulinemia. Clin Cancer Res. 2016;22:1480–8.

    Article  CAS  PubMed  Google Scholar 

  11. Castillo JJ, Moreno DF, Arbelaez MI, Hunter ZR, Treon SP. CXCR4 mutations affect presentation and outcomes in patients with Waldenstrom macroglobulinemia: a systematic review. Exp Rev Hematol. 2019:1–9.

  12. Olszewski AJ, Treon SP, Castillo JJ. Evolution of management and outcomes in Waldenstrom macroglobulinemia: a population-based analysis. Oncologist. 2016;21:1377–86.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Treon SP, Agus TB, Link B, Rodrigues G, Molina A, Lacy MQ, et al. CD20-directed antibody-mediated immunotherapy induces responses and facilitates hematologic recovery in patients with Waldenstrom’s macroglobulinemia. J Immunother. 2001;24:272–9.

    Article  CAS  PubMed  Google Scholar 

  14. Treon SP, Emmanouilides C, Kimby E, Kelliher A, Preffer F, Branagan AR, et al. Extended rituximab therapy in Waldenstrom’s macroglobulinemia. Ann Oncol. 2005;16:132–8.

    Article  CAS  PubMed  Google Scholar 

  15. Dimopoulos MA, Zervas C, Zomas A, Hamilos G, Gika D, Efstathiou E, et al. Extended rituximab therapy for previously untreated patients with Waldenstrom’s macroglobulinemia. Clin Lymphoma. 2002;3:163–6.

    Article  CAS  PubMed  Google Scholar 

  16. Gertz MA, Rue M, Blood E, Kaminer LS, Vesole DH, Greipp PR. Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): an Eastern Cooperative Oncology Group Study (E3A98). Leuk Lymphoma. 2004;45:2047–55.

    Article  CAS  PubMed  Google Scholar 

  17. Ghobrial IM, Fonseca R, Greipp PR, Blood E, Rue M, Vesole DH, et al. Initial immunoglobulin M ‘flare’ after rituximab therapy in patients diagnosed with Waldenstrom macroglobulinemia: an Eastern Cooperative Oncology Group Study. Cancer. 2004;101:2593–8.

    Article  CAS  PubMed  Google Scholar 

  18. Treon SP, Branagan AR, Hunter Z, Santos D, Tournhilac O, Anderson KC. Paradoxical increases in serum IgM and viscosity levels following rituximab in Waldenstrom’s macroglobulinemia. Ann Oncol. 2004;15:1481–3.

    Article  CAS  PubMed  Google Scholar 

  19. Castillo JJ, Kanan S, Meid K, Manning R, Hunter ZR, Treon SP. Rituximab intolerance in patients with Waldenstrom macroglobulinaemia. Br J Haematol. 2016;174:645–8.

    Article  PubMed  Google Scholar 

  20. Furman RR, Eradat HA, DiRienzo CG, Hofmeister CC, Hayman SR, Leonard JP, et al. Once-weekly ofatumumab in untreated or relapsed Waldenstrom’s macroglobulinaemia: an open-label, single-arm, phase 2 study. Lancet Haematol. 2017;4:e24–e34.

    Article  PubMed  Google Scholar 

  21. Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, Zervas K, Tsatalas C, Kokkinis G, et al. Primary treatment of Waldenstrom macroglobulinemia with dexamethasone, rituximab, and cyclophosphamide. J Clin Oncol. 2007;25:3344–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kastritis E, Gavriatopoulou M, Kyrtsonis MC, Roussou M, Hadjiharissi E, Symeonidis A, et al. Dexamethasone, rituximab, and cyclophosphamide as primary treatment of Waldenstrom macroglobulinemia: final analysis of a phase 2 study. Blood. 2015;126:1392–4.

    Article  PubMed  Google Scholar 

  23. Rummel MJ, Niederle N, Maschmeyer G, Banat GA, von Grunhagen U, Losem C, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381:1203–10.

    Article  CAS  PubMed  Google Scholar 

  24. Castillo JJ, Gustine JN, Meid K, Dubeau TE, Severns P, Xu L, et al. Response and survival for primary therapy combination regimens and maintenance rituximab in Waldenstrom macroglobulinaemia. Br J Haematol. 2018;181:77–85.

    Article  CAS  PubMed  Google Scholar 

  25. Paludo J, Abeykoon JP, Shreders A, Ansell SM, Kumar S, Ailawadhi S, et al. Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenstrom macroglobulinemia. Ann Hematol. 2018;97:1417–25.

    Article  CAS  PubMed  Google Scholar 

  26. Martin P, Chen Z, Cheson BD, Robinson KS, Williams M, Rajguru SA, et al. Long-term outcomes, secondary malignancies and stem cell collection following bendamustine in patients with previously treated non-Hodgkin lymphoma. Br J Haematol. 2017;178:250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dimopoulos MA, Garcia-Sanz R, Gavriatopoulou M, Morel P, Kyrtsonis MC, Michalis E, et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood. 2013;122:3276–82.

    Article  CAS  PubMed  Google Scholar 

  28. Ghobrial IM, Hong F, Padmanabhan S, Badros A, Rourke M, Leduc R, et al. Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia. J Clin Oncol. 2010;28:1422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghobrial IM, Xie W, Padmanabhan S, Badros A, Rourke M, Leduc R, et al. Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenstrom Macroglobulinemia. Am J Hematol. 2010;85:670–4.

    Article  CAS  PubMed  Google Scholar 

  30. Treon SP, Ioakimidis L, Soumerai JD, Patterson CJ, Sheehy P, Nelson M, et al. Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol. 2009;27:3830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Treon SP, Tripsas CK, Meid K, Kanan S, Sheehy P, Chuma S, et al. Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenstrom’s macroglobulinemia. Blood. 2014;124:503–10.

    Article  CAS  PubMed  Google Scholar 

  32. Moreau P, Pylypenko H, Grosicki S, Karamanesht I, Leleu X, Grishunina M, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 2011;12:431–40.

    Article  PubMed  Google Scholar 

  33. Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015;372:1430–40.

    Article  CAS  PubMed  Google Scholar 

  34. Treon SP, Meid K, Gustine J, Bantilan KS, Dubeau T, Severns P, et al. Long-term follow-up of previously treated patients who received ibrutinib for symptomatic Waldenstrom’s macroglobulinemia: update of pivotal clinical trial. Blood. 2017;130(Suppl 1):2766.

    Google Scholar 

  35. Dimopoulos MA, Trotman J, Tedeschi A, Matous JV, Macdonald D, Tam C, et al. Ibrutinib for patients with rituximab-refractory Waldenstrom’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18:241–50.

    Article  CAS  PubMed  Google Scholar 

  36. Treon SP, Gustine J, Meid K, Yang G, Xu L, Liu X, et al. Ibrutinib monotherapy in symptomatic, treatment-naive patients with Waldenstrom macroglobulinemia. J Clin Oncol. 2018;36:2755–61.

    Article  CAS  PubMed  Google Scholar 

  37. Lipsky AH, Farooqui MZ, Tian X, Martyr S, Cullinane AM, Nghiem K, et al. Incidence and risk factors of bleeding-related adverse events in patients with chronic lymphocytic leukemia treated with ibrutinib. Haematologica. 2015;100:1571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McMullen JR, Boey EJ, Ooi JY, Seymour JF, Keating MJ, Tam CS. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124:3829–30.

    Article  CAS  PubMed  Google Scholar 

  39. Pretorius L, Du XJ, Woodcock EA, Kiriazis H, Lin RC, Marasco S, et al. Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation. Am J Pathol. 2009;175:998–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ganatra S, Sharma A, Shah S, Chaudhry GM, Martin DT, Neilan TG, et al. Ibrutinib-associated atrial fibrillation. JACC Clin Electrophysiol. 2018;4:1491–1500.

    Article  PubMed  Google Scholar 

  41. Leong DP, Caron F, Hillis C, Duan A, Healey JS, Fraser G, et al. The risk of atrial fibrillation with ibrutinib use: a systematic review and meta-analysis. Blood. 2016;128:138–40.

    Article  CAS  PubMed  Google Scholar 

  42. Gustine JN, Meid K, Dubeau TE, Treon SP, Castillo JJ. Atrial fibrillation associated with ibrutinib in Waldenstrom macroglobulinemia. Am J Hematol. 2016;91:E312–E313.

    Article  PubMed  Google Scholar 

  43. Treon SP, Meid K, Gustine J, Yang G, Xu L, Patterson CJ, et al. Ibrutinib monotherapy produces long-term disease control in previously treated Waldenstrom’s macroglobulinemia. final report of the pivotal trial (NCT01614821). Hematol Oncol. 2019;37(S2):184–5.

    Article  Google Scholar 

  44. Guha A, Derbala MH, Zhao Q, Wiczer TE, Woyach JA, Byrd JC, et al. Ventricular arrhythmias following ibrutinib initiation for lymphoid malignancies. J Am Coll Cardiol. 2018;72:697–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lampson BL, Yu L, Glynn RJ, Barrientos JC, Jacobsen ED, Banerji V, et al. Ventricular arrhythmias and sudden death in patients taking ibrutinib. Blood. 2017;129:2581–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dimopoulos MA, Tedeschi A, Trotman J, Garcia-Sanz R, Macdonald D, Leblond V, et al. Phase 3 trial of ibrutinib plus rituximab in Waldenstrom’s macroglobulinemia. N Engl J Med. 2018;378:2399–410.

    Article  CAS  PubMed  Google Scholar 

  47. Buske C, Tedeschi A, Trotman J, García-Sanz R, MacDonald D, Leblond V, et al. Ibrutinib treatment in Waldenström’s macroglobulinemia: follow-up efficacy and safety from the iNNOVATETM study. Blood. 2018;132(Suppl 1):149–149.

    Article  Google Scholar 

  48. Yang G, Buhrlage SJ, Tan L, Liu X, Chen J, Xu L, et al. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood. 2016;127:3237–52.

    Article  CAS  PubMed  Google Scholar 

  49. Barf T, Covey T, Izumi R, van de Kar B, Gulrajani M, van Lith B, et al. Acalabrutinib (ACP-196): a covalent bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. J Pharm Exp Ther. 2017;363:240–52.

    Article  CAS  Google Scholar 

  50. Guo Y, Liu Y, Hu N, Yu D, Zhou C, Shi G, et al. Discovery of Zanubrutinib (BGB-3111), a novel, potent and selective covalent inhibitor of bruton’s tyrosine kinase. J Med Chem. 2019;62:7923-7940.

  51. Owen R, McCarthy H, Rule S, D’Sa S, Thomas S, Forconi F, et al. Acalabrutinib in patients with Waldenström macroglobulinemia. HemaSphere. 2018;2:375-376.

  52. Trotman J, Opat S, Marlton P, Gottlieb D, Simpson D, Cull G, et al. Updated safety and efficacy data in a phase 1/2 trial of patients with Waldenström macroglobulinaemia (WM) treated with the bruton tyrosine kinase (BTK) inhibitor zanubrutinib (BGB-3111). HemaSphere. 2019;3:192-193.

  53. Dimopoulos M, Opat S, Lee HP, Cull G, D’Sa S, Owen R, et al. Major responses in MYD88 wildtype (MYD88WT) Waldenström macroglobulinemia (WM) patients treated with bruton tyrosine kinase (BTK) inhibitor zanubrutinib (BGB-3111). HemaSphere. 2019;3:196.

  54. Chauhan D, Tian Z, Zhou B, Kuhn D, Orlowski R, Raje N, et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res. 2011;17:5311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou HJ, Aujay MA, Bennett MK, Dajee M, Demo SD, Fang Y, et al. Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J Med Chem. 2009;52:3028–38.

    Article  CAS  PubMed  Google Scholar 

  56. Castillo JJ, Meid K, Gustine JN, Dubeau T, Severns P, Hunter ZR, et al. Prospective clinical trial of ixazomib, dexamethasone, and rituximab as primary therapy in Waldenstrom macroglobulinemia. Clin Cancer Res. 2018;24:3247–52.

    Article  CAS  PubMed  Google Scholar 

  57. Ghobrial IM, Vij R, Siegel D, Badros A, Kaufman J, Raje N, et al. A phase Ib/II study of oprozomib in patients with advanced multiple myeloma and Waldenstrom macroglobulinemia. Clin Cancer Res. 2019. 25:4907-4916.

  58. San Miguel JF, Vidriales MB, Ocio E, Mateo G, Sanchez-Guijo F, Sanchez ML, et al. Immunophenotypic analysis of Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:187–95.

    Article  CAS  PubMed  Google Scholar 

  59. Hunter ZR, Xu L, Yang G, Tsakmaklis N, Vos JM, Liu X, et al. Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenstrom macroglobulinemia. Blood. 2016;128:827–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Davids MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS, Wierda WG, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-hodgkin lymphoma. J Clin Oncol. 2017;35:826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Castillo JJ, Gustine JN, Meid K, Dubeau T, Keezer A, Allan J, et al. Multicenter prospective phase II study of venetoclax in patients with previously treated Waldenstrom macroglobulinemia. Blood. 2018;132:2888.

    Article  Google Scholar 

  62. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370:1008–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Castillo JJ, Gustine JN, Meid K, Dubeau T, Yang G, Xu L, et al. Idelalisib in Waldenstrom macroglobulinemia: high incidence of hepatotoxicity. Leuk Lymphoma. 2017;58:1002–4.

    Article  CAS  PubMed  Google Scholar 

  64. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Chronic lymphocytic leukemia/small lymphocytic lymphoma. Version 5.2019. https://www.nccn.org/professionals/physician_gls/pdf/cll.pdf. Accessed 11 Aug 2019.

  65. Paulus A, Manna A, Akhtar S, Paulus SM, Sharma M, Coignet MV, et al. Targeting CD38 with daratumumab is lethal to Waldenstrom macroglobulinaemia cells. Br J Haematol. 2018;183:196–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang G, Liu X, Chen J, Xu L, Tsakmaklis N, Chen J, et al. Targeting IRAK1/IRAK4 signaling in Waldenstrom’s macroglobulinemia. Blood. 2015;126:4004.

    Article  Google Scholar 

  67. Montero JC, Seoane S, Ocana A, Pandiella A. Inhibition of SRC family kinases and receptor tyrosine kinases by DASATINIB: possible combinations in solid tumors. Clin Cancer Res. 2011;17:5546–52.

    Article  CAS  PubMed  Google Scholar 

  68. Elsawa SF, Novak AJ, Grote DM, Ziesmer SC, Witzig TE, Kyle RA, et al. B-lymphocyte stimulator (BLyS) stimulates immunoglobulin production and malignant B-cell growth in Waldenstrom macroglobulinemia. Blood. 2006;107:2882–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K, Kindsvogel W, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103:689–94.

    Article  CAS  PubMed  Google Scholar 

  70. Hipp S, Tai YT, Blanset D, Deegen P, Wahl J, Thomas O, et al. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia. 2017;31:2278.

    Article  CAS  PubMed  Google Scholar 

  71. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380:1726–37.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shancer Z, Liu XF, Nagata S, Zhou Q, Bera TK, Pastan I. Anti-BCMA immunotoxins produce durable complete remissions in two mouse myeloma models. Proc Natl Acad Sci USA. 2019. https://doi.org/10.1073/pnas.1821733116. [Epub ahead of print]

  73. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377:2531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380:45–56.

    Article  CAS  PubMed  Google Scholar 

  75. Abramson JS, Gordon LI, Palomba ML, Lunning MA, Arnason JE, Forero-Torres A, et al. Updated safety and long term clinical outcomes in TRANSCEND NHL 001, pivotal trial of lisocabtagene maraleucel (JCAR017) in R/R aggressive NHL. J Clin Oncol. 2018;36:suppl: 7505.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge J. Castillo.

Ethics declarations

Conflict of interest

JJC received honoraria and/or research funds from Abbvie, Beigene, Janssen, Millennium, Pharmacyclics, and TG Therapeutics. SPT received honoraria and/or research funds from Bristol-Meyer-Squibb and Pharmacyclics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, J.J., Treon, S.P. What is new in the treatment of Waldenstrom macroglobulinemia?. Leukemia 33, 2555–2562 (2019). https://doi.org/10.1038/s41375-019-0592-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0592-8

This article is cited by

Search

Quick links