Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling

Abstract

Specific microRNA (miRNA) signatures have been associated with different cytogenetic subtypes in acute leukemias. This finding prompted us to investigate potential associations between genetic abnormalities in multiple myeloma (MM) and singular miRNA expression profiles. Moreover, global gene expression profiling was also analyzed to find correlated miRNA gene expression and select miRNA target genes that show such correlation. For this purpose, we analyzed the expression level of 365 miRNAs and the gene expression profiling in 60 newly diagnosed MM patients, selected to represent the most relevant recurrent genetic abnormalities. Supervised analysis showed significantly deregulated miRNAs in the different cytogenetic subtypes as compared with normal PC. It is interesting to note that miR-1 and miR-133a clustered on the same chromosomal loci, were specifically overexpressed in the cases with t(14;16). The analysis of the relationship between miRNA expression and their respective target genes showed a conserved inverse correlation between several miRNAs deregulated in MM cells and CCND2 expression level. These results illustrate, for the first time, that miRNA expression pattern in MM is associated with genetic abnormalities, and that the correlation of the expression profile of miRNA and their putative mRNA targets is useful to find statistically significant protein-coding genes in MM pathogenesis associated with changes in specific miRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Chng WJ, Glebov O, Bergsagel PL, Kuehl WM . Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol 2007; 20: 571–596.

    Article  CAS  Google Scholar 

  2. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC . Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104: 607–618.

    Article  CAS  Google Scholar 

  3. Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O’Connor SM et al. Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 2003; 102: 4504–4511.

    Article  CAS  Google Scholar 

  4. Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–1757.

    Article  CAS  Google Scholar 

  5. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy Jr J . Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005; 106: 296–303.

    Article  CAS  Google Scholar 

  6. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  Google Scholar 

  7. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  Google Scholar 

  8. Esquela-Kerscher A, Slack FJ . Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  Google Scholar 

  9. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  10. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.

    Article  CAS  Google Scholar 

  11. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  Google Scholar 

  12. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Lowenberg B . MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008; 111: 5078–5085.

    Article  CAS  Google Scholar 

  13. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008; 105: 15535–15540.

    Article  CAS  Google Scholar 

  14. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 2008; 105: 12885–12890.

    Article  CAS  Google Scholar 

  15. Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F et al. microRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 2009; 113: 6669–6680.

    Article  CAS  Google Scholar 

  16. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 2008; 105: 3945–3950.

    Article  CAS  Google Scholar 

  17. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.

    Article  CAS  Google Scholar 

  18. Visone R, Rassenti LZ, Veronese A, Taccioli C, Costinean S, Aguda BD et al. Karyotype specific microRNA signature in chronic lymphocytic leukemia. Blood 2009; 114: 3872–3879.

    Article  CAS  Google Scholar 

  19. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  Google Scholar 

  20. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  Google Scholar 

  21. Gutierrez NC, Castellanos MV, Martin ML, Mateos MV, Hernandez JM, Fernandez M et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 2007; 21: 143–150.

    Article  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  23. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006; 5: 29.

    Article  CAS  Google Scholar 

  24. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  Google Scholar 

  25. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  Google Scholar 

  26. Goeman JJ, van de Geer SA, de KF, van Houwelingen HC . A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 2004; 20: 93–99.

    Article  CAS  Google Scholar 

  27. Gutierrez NC, Lopez-Perez R, Hernandez JM, Isidro I, Gonzalez B, Delgado M et al. Gene expression profile reveals deregulation of genes with relevant functions in the different subclasses of acute myeloid leukemia. Leukemia 2005; 19: 402–409.

    Article  CAS  Google Scholar 

  28. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  Google Scholar 

  29. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T . miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37: D105–D110.

    Article  CAS  Google Scholar 

  30. Carthew RW, Sontheimer EJ . Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642–655.

    Article  CAS  Google Scholar 

  31. Cheng AM, Byrom MW, Shelton J, Ford LP . Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33: 1290–1297.

    Article  CAS  Google Scholar 

  32. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122: 553–563.

    Article  CAS  Google Scholar 

  33. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    Article  CAS  Google Scholar 

  34. Wang X, Wang X . Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006; 34: 1646–1652.

    Article  CAS  Google Scholar 

  35. Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL et al. Using expression profiling data to identify human microRNA targets. Nat Methods 2007; 4: 1045–1049.

    Article  CAS  Google Scholar 

  36. Li SC, Tang P, Lin WC . Intronic microRNA: discovery and biological implications. DNA Cell Biol 2007; 26: 195–207.

    Article  Google Scholar 

  37. Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  Google Scholar 

  38. Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 2007; 104: 19971–19976.

    Article  CAS  Google Scholar 

  39. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 2007; 120: 3045–3052.

    Article  CAS  Google Scholar 

  40. Zhan F, Barlogie B, Shaughnessy Jr J . Toward the identification of distinct molecular and clinical entities of multiple myeloma using global gene expression profiling. Semin Hematol 2003; 40: 308–320.

    Article  CAS  Google Scholar 

  41. Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 2008; 28: 630–638.

    Article  CAS  Google Scholar 

  42. Vigorito E, Perks KL, breu-Goodger C, Bunting S, Xiang Z, Kohlhaas S et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27: 847–859.

    Article  CAS  Google Scholar 

  43. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 2007; 67: 2456–2468.

    Article  CAS  Google Scholar 

  44. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  Google Scholar 

  45. Chen H, Li M, Campbell RA, Burkhardt K, Zhu D, Li SG et al. Interference with nuclear factor kappa B and c-Jun NH2-terminal kinase signaling by TRAF6C small interfering RNA inhibits myeloma cell proliferation and enhances apoptosis. Oncogene 2006; 25: 6520–6527.

    Article  CAS  Google Scholar 

  46. Song KW, Talamas FX, Suttmann RT, Olson PS, Barnett JW, Lee SW et al. The kinase activities of interleukin-1 receptor associated kinase (IRAK)-1 and 4 are redundant in the control of inflammatory cytokine expression in human cells. Mol Immunol 2009; 46: 1458–1466.

    Article  CAS  Google Scholar 

  47. Moynagh PN . The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol 2009; 30: 33–42.

    Article  CAS  Google Scholar 

  48. Taganov KD, Boldin MP, Chang KJ, Baltimore D . NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481–12486.

    Article  CAS  Google Scholar 

  49. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK . Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10: R101.

    Article  Google Scholar 

  50. Maiso P, Ocio EM, Garayoa M, Montero JC, Hofmann F, Garcia-Echeverria C et al. The insulin-like growth factor-I receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells. Br J Haematol 2008; 141: 470–482.

    Article  CAS  Google Scholar 

  51. Hideshima T, Anderson KC . Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002; 2: 927–937.

    Article  CAS  Google Scholar 

  52. Igarashi K, Ochiai K, Muto A . Architecture and dynamics of the transcription factor network that regulates B-to-plasma cell differentiation. J Biochem 2007; 141: 783–789.

    Article  CAS  Google Scholar 

  53. Cooper D, Lindberg FP, Gamble JR, Brown EJ, Vadas MA . Transendothelial migration of neutrophils involves integrin-associated protein (CD47). Proc Natl Acad Sci USA 1995; 92: 3978–3982.

    Article  CAS  Google Scholar 

  54. Mateo V, Brown EJ, Biron G, Rubio M, Fischer A, Deist FL et al. Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: link between phosphatidylserine exposure and cytoskeleton organization. Blood 2002; 100: 2882–2890.

    Article  CAS  Google Scholar 

  55. Gutierrez NC, Ocio EM, Maiso P, Ferminan E, Delgado M, Lopez-Perez R et al. Gene expression profiling of B-lymphocyte and plasma cell populations from Waldenström's macroglobulinemia comparison with expression patterns of the same cell-counterparts from other B-cell neoplasms. Leukemia 2007; 21: 541–549.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Spanish FIS (PI080568) and ‘Gerencia Regional de Salud, Junta de Castilla y León’ (GRS202/A08) grants, and the Spanish Myeloma Network Program (RD06/0020/0006). M.E.S. was supported by the ‘Ministerio de Sanidad y Consumo (Contrato de Técnicos de Apoyo a la Investigación, CA08/00212). J.D.L.R. was supported by Junta de Castilla y León grant (CSI07A09).

We are grateful to ‘Grupo Español de Mieloma’ clinicians for providing MM samples; to JA Pérez-Simón and F Sánchez-Guijo for providing healthy bone marrow samples; to I. Isidro, T Prieto, A Antón and M Hernández for technical assistance; and to E Bandrés and MD Odero for their support in the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J F San Miguel.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, N., Sarasquete, M., Misiewicz-Krzeminska, I. et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia 24, 629–637 (2010). https://doi.org/10.1038/leu.2009.274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.274

Keywords

This article is cited by

Search

Quick links