Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Obesity enhanced respiratory health effects of ambient air pollution in Chinese children: the Seven Northeastern Cities study

Abstract

Objective:

Experimental data suggest that obesity enhances the effects of ambient air pollutants on exacerbation of asthma; however, there is little supporting epidemiological evidence. The aim of present study is to evaluate whether obesity modifies the association between ambient air pollution and respiratory symptoms and asthma in children.

Methods:

In Northeast China, 30 056 children aged 2–14 years were selected from 25 districts of seven cities. Parents of the children completed questionnaires that characterized the children’s histories of respiratory symptoms and illness, and associated risk factors. Overweight and obesity were calculated with an age and sex-specific body mass index (BMI, kg m−2), with BMIs of greater than the 85th and 95th percentiles defining overweight and obesity, respectively. Average annual ambient exposure to particulate matter with an aerodynamic diameter 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxides (NO2) and ozone (O3) was estimated from data collected at monitoring stations in each of the 25 study districts.

Results:

We observed consistent and significant interactions between exposure and obesity on respiratory symptoms and asthma. The associations between each pollutant’s yearly concentrations and respiratory symptoms and asthma were consistently larger for overweight/obese children than for normal-weight children, with odds ratios (ORs) ranging from 1.17 per 31 μg m−3 for PM10 on wheeze (95% confidence interval (CI): 1.01, 1.36) to 1.50 per 10 μg m−3 for NO2 on phlegm (95% CI: 1.21, 1.87) and cough (95% CI: 1.24, 1.81).

Conclusion:

These results showed that overweight/obesity enhanced respiratory health effects of air pollution in the study children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. O'Connor GT, Neas L, Vaughn B, Kattan M, Mitchell H, Crain EF et al. Acute respiratory health effects of air pollution on children with asthma in US inner cities. J Allergy Clin Immunol 2008; 121: 1133–1139.

    Article  Google Scholar 

  2. Peden DB . Pollutants and asthma: role of air toxics. Environ Health Perspect 2002; 110 (Suppl 4): 565–568.

    Article  CAS  Google Scholar 

  3. Peters JM, Avol E, Navidi W, London SJ, Gauderman WJ, Lurmann F et al. A study of twelve Southern California communities with differing levels and types of air pollution. I. Prevalence of respiratory morbidity. Am J Respir Crit Care Med 1999; 159: 760–767.

    Article  CAS  Google Scholar 

  4. Qian Z, Chapman RS, Hu W, Wei F, Korn LR, Zhang JJ . Using air pollution based community clusters to explore air pollution health effects in children. Environ In 2004; 30: 611–620.

    CAS  Google Scholar 

  5. Zhang JJ, Hu W, Wei F, Wu G, Korn LR, Chapman RS . Children's respiratory morbidity prevalence in relation to air pollution in four Chinese cities. Environ Health Perspect 2002; 110: 961–967.

    Article  CAS  Google Scholar 

  6. Koranteng S, Vargas AR, Buka I . Ambient air pollution and children’s health: A systematic review of Canadian epidemiological studies. Paediatr Child Health 2007; 12: 225–233.

    PubMed  PubMed Central  Google Scholar 

  7. Weichenthal S, Kulka R, Dubeau A, Martin C, WanQ D, Dales R . Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect 2011; 119: 1373–1378.

    Article  CAS  Google Scholar 

  8. Bell ML, Davis DL . Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environ Health Perspect 2001; 109 (Suppl 3): 389–394.

    Article  CAS  Google Scholar 

  9. McCreanor J, Cullinan P, Nieuwenhuijsen MJ, Stewart-Evans J, Malliarou E, Jarup L et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 2007; 357: 2348–2358.

    Article  CAS  Google Scholar 

  10. Faustini A, Stafoggia M, Berti G, Bisanti L, Chiusolo M, Cernigliaro A et al. The relationship between ambient particulate matter and respiratory mortality: a multi-city study in Italy. Eur Respir J 2011; 38: 538–547.

    Article  CAS  Google Scholar 

  11. Migliore E, Berti G, Galassi C, Pearce N, Forastiere F, Calabrese R et al. Respiratory symptoms in children living near busy roads and their relationship to vehicular traffic: results of an Italian multicenter study (SIDRIA 2). Environ Health 2009; 8: 27.

    Article  Google Scholar 

  12. Kontos AS, Fassois SD, Deli MF . Short-term effects of air pollution on childhood respiratory illness in Piraeus, Greece, 1987-1992: nonparametric stochastic dynamic analysis. Environ Res 1999; 81: 275–296.

    Article  CAS  Google Scholar 

  13. Samoli E, Peng R, Ramsay T, Pipikou M, Touloumi G, Dominici F et al. Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA study. Environ Health Perspect 2008; 116: 1480–1486.

    Article  Google Scholar 

  14. Lee JT, Kim H, Song H, Hong YC, Cho YS, Shin SY et al. Air pollution and asthma among children in Seoul, Korea. Epidemiology 2002; 13: 481–484.

    Article  Google Scholar 

  15. Son JY, Bell ML, Lee JT . Individual exposure to air pollution and lung function in Korea: spatial analysis using multiple exposure approaches. Environ Res 2010; 110: 739–749.

    Article  CAS  Google Scholar 

  16. Cakmak S, Dales RE, Gultekin T, Vidal CB, Farnendaz M, Rubio MA et al. Components of particulate air pollution and emergency department visits in Chile. Arch Environ Occup Health 2009; 64: 148–155.

    Article  Google Scholar 

  17. Ostro BD, Eskeland GS, Sanchez JM, Feyzioqlu T . Air pollution and health effects: A study of medical visits among children in Santiago, Chile. Environ Health Perspect 1999; 107: 69–73.

    Article  CAS  Google Scholar 

  18. Beuther DA, Weiss ST, Sutherland ER . Obesity and Asthma. Am J Respir Crit Care Med 2006; 174: 112–119.

    Article  Google Scholar 

  19. Bennett WD, Hazucha MJ, Folinsbee LJ, Bromberg PA, Kissling GE, London SJ . Acute pulmonary function response to ozone in young adults as a function of body mass index. Inhal Toxicol 2007; 19: 1147–1154.

    Article  CAS  Google Scholar 

  20. Gilliland FD, Berhane K, Islam T, McConnell R, Gauderman WJ, Gilliland SS et al. Obesity and the Risk of Newly Diagnosed Asthma in School-age Children. Am J Epidemiol 2003; 158: 406–415.

    Article  Google Scholar 

  21. He QQ, Wong TW, Du L, Jiang ZQ, Qiu H, Gao Y et al. Respiratory health in overweight and obese Chinese children. Pediatr Pulmonol 2009; 44: 997–1002.

    Article  Google Scholar 

  22. Lu FL, Johnston RA, Flynt L, Theman TA, Terry RD, Schwartzman IN et al. Increased pulmonary responses to acute ozone exposure in obese db/db mice. Am J Physiol Lung Cell Mol Physiol 2006; 290: L856–L865.

    Article  CAS  Google Scholar 

  23. Johnston RA, Theman TA, Lu FL, Terry RD, Williams ES, Shore SA . Diet-induced obesity causes innate airway hyperresponsiveness to methacholine and enhances ozone-induced pulmonary inflammation. J Appl Physiol 2008; 104: 1727–1735.

    Article  CAS  Google Scholar 

  24. Johnston RA, Zhu M, Hernandez CB, Williams ES, Shore SA . Onset of obesity in carboxypeptidase E-deficient mice and effect on airway responsiveness and pulmonary responses to ozone. J Appl Physiol 2010; 108: 1812–1819.

    Article  CAS  Google Scholar 

  25. Shore SA, Rivera-Sanchez YM, Schwartzman IN, Johnston RA . Responses to ozone are increased in obese mice. J Appl Physiol 2003; 95: 938–945.

    Article  CAS  Google Scholar 

  26. Dong GH, Chen T, Liu MM, Wang D, Ma YN, Ren WH et al. Gender Difference for Effects of Compound-Air Pollution on Respiratory Symptoms in Children: Results from 25 Districts of Northeast China. PLoS One 2011; 6: e22470.

    Article  CAS  Google Scholar 

  27. World Health Organization. Physical status: the use and interpretation of anthropometry. WHO: Geneva, Switzerland, 1995.

  28. National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention. BMI: body mass index. Atlanta, GA: Centers for Disease Control and Prevention, 2002. World Wide Web URL http://www.cdc.gov/nccdphp/dnpa/bmi Accessed on January 27, 2012.

  29. Ferris BG . Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 1978; 118 (6 Pt 2): 1–120.

    CAS  PubMed  Google Scholar 

  30. Ware JH, Ferris BG, Dockery DW, Spengler JD, Stram DO, Speizer FE . Effects of ambient sulfur oxides and suspended particles on respiratory health of preadolescent children. Am Rev Respir Dis 1986; 133: 834–842.

    CAS  PubMed  Google Scholar 

  31. Dockery DW, Cunningham J, Damokosh AI, Neas LM, Spengler JD, Koutrakis P et al. Health effects of acid aerosols on North American children: respiratory symptoms. Environ Health Perspect 1996; 104: 500–505.

    Article  CAS  Google Scholar 

  32. Ma YN, Chen T, Wang D, Liu MM, He QC, Dong GH . Prevalence of overweight and obesity among preschool children from six cities of northeast China. Archi Med Res 2011; 42: 633–640.

    Article  Google Scholar 

  33. Huang ZY, Buren BT, Hasen GW, Lin Z, Li YS, Zhang ZW et al. Trend of overweight and obesity in aged 7 to 18 Mongolian ethnic children and adolescents from 1985-2010. Zhonghua Liu Xing Bing Xue Za Zhi 2012; 33: 201–206.

    PubMed  Google Scholar 

  34. Alexeeff SE, Litonjua AA, Suh H, Sparrow D, Vokonas PS, Schwartz J . Ozone Exposure and Lung Function: Effect Modified by Obesity and Airways Hyperresponsiveness in the VA Normative Aging Study. Chest 2007; 132: 1890–1897.

    Article  CAS  Google Scholar 

  35. Rivera-Sanchez YM, Johnston RA, Schwartzman IN, Valone J, Silverman ES, Fredberg JJ et al. Differential effects of ozone on airway and tissue mechanics in obese mice. J Appl Physiol 2004; 96: 2200–2206.

    Article  CAS  Google Scholar 

  36. Kelly FJ, Fussell JC . Air pollution and airway disease. Clin Exp Allergy 2011; 41: 1059–1071.

    Article  CAS  Google Scholar 

  37. Berhane K, Zhang Y, Linn WS, Rappaport EB, Bastain TM, Salam MT et al. The effect of ambient air pollution on exhaled nitric oxide in the Children's Health Study. Eur Respir J 2011; 37: 1029–1036.

    Article  CAS  Google Scholar 

  38. Hussain I, Jain VV, O'Shaughnessy P, Businga TR, Kline J . Effect of nitrogen dioxide exposure on allergic asthma in a murine model. Chest 2004; 126: 198–204.

    Article  CAS  Google Scholar 

  39. Miller RL, Ho SM . Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med 2008; 177: 567–573.

    Article  CAS  Google Scholar 

  40. Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J et al. Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol 2010; 126: 845–852.

    Article  CAS  Google Scholar 

  41. Fantuzzi G . Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005; 115: 911–919.

    Article  CAS  Google Scholar 

  42. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    Article  CAS  Google Scholar 

  43. Wellen KE, Hotamisligil GS . Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003; 112: 1785–1788.

    Article  CAS  Google Scholar 

  44. Zou MH . Is NAD(P)H oxidase a missing link for air pollution-enhanced obesity? Arterioscler Thromb Vasc Biol 2010; 30: 2323–2324.

    Article  CAS  Google Scholar 

  45. Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T et al. Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler Thromb Vasc Biol 2010; 30: 2518–2527.

    Article  CAS  Google Scholar 

  46. Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JKC . Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. Am J Epidemiol 2007; 166: 1045–1052.

    Article  Google Scholar 

  47. Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B . Traffic-Related Air Toxics and Term Low Birth Weight in Los Angeles County, California. Environ Health Perspect 2012; 120: 132–138.

    Article  CAS  Google Scholar 

  48. Aubard Y, Magne I . Carbon monoxide poisoning in pregnancy. BJOG 2000; 107: 833–838.

    Article  CAS  Google Scholar 

  49. Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I et al. for the Avon Longitudinal Study of Parents and Children Study Team. Early life risk factors for obesity in childhood: cohort study. BMJ 2005; 330: 1357.

    Article  Google Scholar 

  50. Dietz WH . Reversing the tide of obesity. Lancet 2011; 378: 744–746.

    Article  Google Scholar 

  51. Ong KK . Early determinants of obesity. Endocr Dev 2010; 19: 53–61.

    Article  Google Scholar 

  52. Druet C, Stettler N, Sharp S, Simmons RK, Cooper C, Smith GD et al. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr Perinat Epidemiol 2012; 26: 19–26.

    Article  Google Scholar 

  53. King GG, Brown NJ, Diba C, Thorpe CW, Muñoz P, Marks GB et al. The effects of body weight on airway calibre. Eur Respir J 2005; 25: 896–901.

    Article  CAS  Google Scholar 

  54. Zerah F, Harf A, Perlemuter L, Lorino H, Lorino AM, Atlan G . Effects of obesity on respiratory resistance. Chest 1993; 103: 1470–1476.

    Article  CAS  Google Scholar 

  55. Salome CM, Munoz PA, Berend N, Thorpe CW, Schachter LM, King GG . Effect of obesity on breathlessness and airway responsiveness to methacholine in non-asthmatic subjects. Int J Obes (Lond) 2008; 32: 502–509.

    Article  CAS  Google Scholar 

  56. Sampson MG, Grassino AE . Load compensation in obese patients during quiet tidal breathing. J Appl Physiol 1983; 55: 1269–1276.

    Article  CAS  Google Scholar 

  57. Weissman DN . Epidemiology of asthma: severity matters. Chest 2002; 121: 6–8.

    Article  Google Scholar 

  58. Rothman KJ, Greenland S, Lash TL . Modern epidemiology. 3rd ed. Lippincott Williams & Wilkins, Publishers: Philadelphia, PA, 2008.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the cooperation of the seven cities, school principals, teachers, and students and their parents. This work was supported by grants from the China Environmental Protection Foundation (CEPF2008–123–1–5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Qian.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, G., Qian, Z., Liu, MM. et al. Obesity enhanced respiratory health effects of ambient air pollution in Chinese children: the Seven Northeastern Cities study. Int J Obes 37, 94–100 (2013). https://doi.org/10.1038/ijo.2012.125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.125

Keywords

Search

Quick links