Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and population health

Ambient air pollution and the development of overweight and obesity in children: a large longitudinal study

Abstract

Background

Ambient air pollution may play a role in childhood obesity development, but evidence is scarce, and the modifying role of socioeconomic status (SES) is unclear. We aimed to examine the association between exposure to air pollution during early childhood and subsequent risk of developing overweight and obesity, and to evaluate whether SES is a modifier of this association.

Methods

This longitudinal study included 416,955 children identified as normal weight between 2–5 years old and registered in an electronic primary healthcare record between 2006 and 2016 in Catalonia (Spain). Children were followed-up until they developed overweight or obesity, reached 15 years of age, died, transferred out, or end of study period (31/12/2018). Overweight and obesity were defined following the WHO reference obtained from height and weight measures. We estimated annual residential census levels of nitrogen dioxide (NO2) and particulate matter <10 μm (PM10), <2.5 μm (PM2.5), and 2.5–10 μm (PMcoarse) at study entry. We estimated the risk of developing overweight and obesity per interquartile range increase in air pollution exposure with Cox proportional hazard models.

Results

A total of 142,590 (34.2%) children developed overweight or obesity. Increased exposure to NO2, PM10, and PMcoarse was associated with a 2–3% increased risk of developing overweight and obesity (hazard ratio [HR] per 21.8 μg/m3 NO2 = 1.03 [95% CI: 1.02–1.04]; HR per 6.4 μg/m3 PM10 = 1.02 [95% CI: 1.02–1.03]; HR per 4.6 µg/m3 PMcoarse = 1.02, [95% CI: 1.01–1.02]). For all air pollutants, associations were stronger among children living in most compared to least deprived areas.

Conclusions

This study suggests that early life exposure to air pollution may be associated with a small increase in the risk of developing overweight and obesity in childhood, and that this association may be exacerbated in the most deprived areas. Even these small associations are of potential global health importance because air pollution exposure is widespread and the long-term health consequences of childhood obesity are clear.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389:1907–18.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151:362–7.

    Article  CAS  PubMed  Google Scholar 

  3. Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015;74:136–43.

    Article  CAS  PubMed  Google Scholar 

  4. Furlong MA, Klimentidis YC. Associations of air pollution with obesity and body fat percentage, and modification by polygenic risk score for BMI in the UK Biobank. Environ Res. 2020; 185. https://doi.org/10.1016/j.envres.2020.109364.

  5. Wang Z, Zhao L, Huang Q, Hong A, Yu C, Xiao Q, et al. Traffic-related environmental factors and childhood obesity: a systematic review and meta-analysis. Obes Rev. 2020; obr.12995.

  6. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009;119:538–46.

    Article  CAS  PubMed  Google Scholar 

  7. Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T, et al. Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler Thromb Vasc Biol. 2010;30:2518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM, Auten RL, et al. Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner. FASEB J. 2012;26:4743–54.

    Article  CAS  PubMed  Google Scholar 

  9. Chen Z, Herting MM, Chatzi L, Belcher BR, Alderete TL, McConnell R, et al. Regional and traffic-related air pollutants are associated with higher consumption of fast food and trans fat among adolescents. Am J Clin Nutr. 2019;109:99–108.

    Article  PubMed  Google Scholar 

  10. Jerrett M, McConnell R, Wolch J, Chang R, Lam C, Dunton G, et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Heal. 2014;13:49.

    Article  Google Scholar 

  11. Dong G-H, Wang J, Zeng X-W, Chen L, Qin X-D, Zhou Y, et al. Interactions between air pollution and obesity on blood pressure and hypertension in Chinese children. Epidemiology. 2015;26:740–7.

    Article  PubMed  Google Scholar 

  12. de Bont J, Casas M, Barrera-Gómez J, Cirach M, Rivas I, Valvi D, et al. Ambient air pollution and overweight and obesity in school-aged children in Barcelona, Spain. Environ Int. 2019;125:58–64.

    Article  PubMed  PubMed Central  Google Scholar 

  13. McConnell R, Shen E, Gilliland FD, Jerrett M, Wolch J, Chang CC, et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: the Southern California Children’s Health Study. Environ Health Perspect. 2015;123:360–6.

    Article  PubMed  Google Scholar 

  14. Kim JS, Alderete TL, Chen Z, Lurmann F, Rappaport E, Habre R, et al. Longitudinal associations of in utero and early life near-roadway air pollution with trajectories of childhood body mass index. Environ Heal. 2018;17:64.

    Article  Google Scholar 

  15. Bloemsma LD, Wijga AH, Klompmaker JO, Janssen NAH, Smit HA, Koppelman GH, et al. The associations of air pollution, traffic noise and green space with overweight throughout childhood: the PIAMA birth cohort study. Environ Res. 2019;169:348–56.

    Article  CAS  PubMed  Google Scholar 

  16. An R, Ji M, Yan H, Guan C. Impact of ambient air pollution on obesity: a systematic review. Int J Obes. 2018;42:1112–26.

    Article  CAS  Google Scholar 

  17. Fioravanti S, Cesaroni G, Badaloni C, Michelozzi P, Forastiere F, Porta D. Traffic-related air pollution and childhood obesity in an Italian birth cohort. Environ Res. 2018;160:479–86.

    Article  CAS  PubMed  Google Scholar 

  18. Cunningham SA, Kramer MR, Narayan KMV. Incidence of childhood obesity in the United States. N Engl J Med. 2014;3705370:403–11.

    Article  Google Scholar 

  19. de Bont J, Díaz Y, Casas M, García-Gil M, Vrijheid M, Duarte-Salles T. Time trends and sociodemographic factors associated with overweight and obesity in children and adolescents in Spain. JAMA Netw Open. 2020;3:e201171.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moreno LA, Pigeot I, Ahrens W. Epidemiology of obesity in children and adolescents. Springer New York: New York, NY, 2011. https://doi.org/10.1007/978-1-4419-6039-9.

  21. Temam S, Burte E, Adam M, Antó JM, Basagaña X, Bousquet J, et al. Socioeconomic position and outdoor nitrogen dioxide (NO 2) exposure in Western Europe: a multi-city analysis. Environ Int. 2017;101:117–24.

    Article  CAS  PubMed  Google Scholar 

  22. Robinson O, Tamayo I, de Castro M, Valentin A, Giorgis-Allemand L, Krog NH, et al. The urban exposome during pregnancy and its socioeconomic determinants. Environ Health Perspect. 2018;126:077005.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hajat A, Hsia C, O’Neill MS. Socioeconomic disparities and air pollution exposure: a global review. Curr. Environ. Heal. Reports. 2015;2:440–50.

    Article  CAS  Google Scholar 

  24. Forastiere F, Stafoggia M, Tasco C, Picciotto S, Agabiti N, Cesaroni G, et al. Socioeconomic status, particulate air pollution, and daily mortality: differential exposure or differential susceptibility. Am J Ind Med. 2007;50:208–16.

    Article  PubMed  Google Scholar 

  25. Bolíbar B, Fina Avilés F, Morros R, Garcia-Gil M, del M, Hermosilla E, et al. [SIDIAP database: electronic clinical records in primary care as a source of information for epidemiologic research]. Med Clin (Barc). 2012;138:617–21.

    Article  Google Scholar 

  26. García-Gil MDM, Hermosilla E, Prieto-Alhambra D, Fina F, Rosell M, Ramos R, et al. Construction and validation of a scoring system for the selection of high-quality data in a Spanish population primary care database (SIDIAP). Inform Prim Care. 2011;19:135–45.

    Google Scholar 

  27. WHO. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006;Suppl 450:76–85.

    Google Scholar 

  28. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Generalitat de Catalunya. Protocol d’activitats preventives i de promoció de la salut a l’edat pediàtrica. Direcció General de Salut Pública, 2008. https://doi.org/10.1017/CBO9781107415324.004.

  30. Yang S, Hutcheon JA. Identifying outliers and implausible values in growth trajectory data. Ann Epidemiol. 2016;26:77–80.e2.

    Article  PubMed  Google Scholar 

  31. WHO. Physical status: the use and interpretation of anthropometry. Geneva, 1995. http://apps.who.int/iris/bitstream/10665/37003/1/WHO_TRS_854.pdf. Accessed 18 Apr 2017.

  32. Eeftens M, Beelen R, de Hoogh K, Bellander T, Cesaroni G, Cirach M, et al. Development of land use regression models for PM 2.5, PM 2.5 absorbance, PM 10 and PM coarse in 20 European Study Areas; results of the ESCAPE Project. Environ Sci Technol. 2012;46:11195–205.

    Article  CAS  PubMed  Google Scholar 

  33. Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos Environ. 2013;72:10–23.

    Article  CAS  Google Scholar 

  34. Nieuwenhuijsen MJ, Gascon M, Martinez D, Ponjoan A, Blanch J, Garcia-Gil MDM, et al. Air pollution, noise, blue space, and green space and premature mortality in Barcelona: a mega cohort. Int J Environ Res Public Health. 2018;15:2405.

    Article  CAS  PubMed Central  Google Scholar 

  35. Duque I, Domínguez-Berjón MF, Cebrecos A, Prieto-Salceda MD, Esnaola S, Calvo Sánchez M, et al. Deprivation index by enumeration district in Spain, 2011. Gac Sanit. 2020. https://doi.org/10.1016/j.gaceta.2019.10.008.

  36. Duarte-Salles T, Méndez-Boo L, Díaz Y, Hermosilla E, Aragón M, Fina F. et al. Linkage of mother and child pairs in the information system for research in primary care (SIDIAP) in Catalonia. Pharmacoepidemiol Drug Saf. 2018. https://doi.org/10.1002/pds.4629.

  37. CREAF. Geographic information system: MCSC, 4th edition (vectorial). 2009. https://www.creaf.uab.es/mcsc/usa/poligons4.htm. Accessed 11 Jul 2019.

  38. Harrell FE. Regression modeling strategies, with applications to linear models, survival analysis and logistic regression. Springer: New York, NY, 2001. http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/RmS. Accessed 22 May 2020.

  39. Orsini N, Greenland S. A procedure to tabulate and plot results after flexible modeling of a quantitative covariate. Stata J. 2011;11:1–29.

    Article  Google Scholar 

  40. Kleinbaum DG, Klein M. Survival analysis: a self-learning text. 3rd ed. Springer, New York, 2012. https://doi.org/10.1007/978-1-4419-6646-9_1.

  41. James P, Banay RF, Hart JE, Laden F. A Review of the health benefits of greenness. Curr Epidemiol Reports. 2015;2:218–218.

    Article  Google Scholar 

  42. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Peteresen I, et al. The Reporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med. 2015; 12. https://doi.org/10.1371/journal.pmed.1001885.

  43. Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol. 2016;138:386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cyrys J, Eeftens M, Heinrich J, Ampe C, Armengaud A, Beelen R, et al. Variation of NO2 and NOx concentrations between and within 36 European study areas: results from the ESCAPE study. Atmos Environ. 2012;62:374–90.

    Article  CAS  Google Scholar 

  45. Eeftens M, Tsai MY, Ampe C, Anwander B, Beelen R, Bellander T, et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2—Results of the ESCAPE project. Atmos Environ. 2012;62:303–17.

    Article  CAS  Google Scholar 

  46. Janssen NAH, Hoek G, Simic-Lawson M, Fischer P, van Bree L, Brink H Ten, et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with pm10 and pm2.5. Environ Health Perspect. 2011;119:1691–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. O’Neill MS, Jerrett M, Kawachi I, Levy JI, Cohen AJ, Gouveia N, et al. Health, wealth, and air pollution: advancing theory and methods. Environ Health Perspect. 2003;111:1861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Diez Roux AV, Mair C. Neighborhoods and health. Ann N. Y. Acad Sci. 2010;1186:125–45.

    Article  PubMed  Google Scholar 

  49. Chi GC, Hajat A, Bird CE, Cullen MR, Griffin BA, Miller KA, et al. Individual and neighborhood socioeconomic status and the association between air pollution and cardiovascular disease. Environ Health Perspect. 2016;124:1840–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Haberzettl P, O’Toole TE, Bhatnagar A, Conklin DJ. Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress. Environ Health Perspect. 2016;124:1830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roberts JD, Voss JD, Knight B. The association of ambient air pollution and physical inactivity in the United States. PLoS ONE. 2014;9:e90143.

    Article  PubMed  PubMed Central  Google Scholar 

  52. An R, Zhang S, Ji M, Guan C. Impact of ambient air pollution on physical activity among adults: a systematic review and meta-analysis. Perspect Public Health. 2018;138:111–21.

    Article  PubMed  Google Scholar 

  53. An R, Shen J, Ying B, Tainio M, Andersen ZJ, de Nazelle A. Impact of ambient air pollution on physical activity and sedentary behavior in China: a systematic review. Environ Res. 2019;176:108545.

    Article  CAS  PubMed  Google Scholar 

  54. Nieuwenhuijsen MJ. Exposure assessment in environmental epidemiology. 2nd ed. Oxford University Press, Oxford, 2015. https://doi.org/10.1093/med/9780199378784.001.0001.

  55. Eeftens M, Beelen R, Fischer P, Brunekreef B, Meliefste K, Hoek G. Stability of measured and modelled spatial contrasts in NO2 over time. Occup Environ Med. 2011;68:765–70.

    Article  CAS  PubMed  Google Scholar 

  56. Vrijheid M, Fossati S, Maitre L, Márquez S, Roumeliotaki T, Agier L, et al. Early-life environmental exposures and childhood obesity: an exposome-wide approach. Environ Health Perspect. 2020;128:1–14.

    Article  Google Scholar 

  57. Donaire-Gonzalez D, Curto A, Valentín A, Andrusaityte S, Basagaña X, Casas M, et al. Personal assessment of the external exposome during pregnancy and childhood in Europe. Environ Res. 2019. https://doi.org/10.1016/j.envres.2019.04.015.

Download references

Acknowledgements

We acknowledge support from the Spanish Ministry of Science, Innovation and Universities through the “Centro de Excelencia Severo Ochoa 2019-2023” Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program.

Funding

Project funded by La Marató de TV3 Foundation (Grant Number: 201621-30). Talita Duarte-Salles is funded by the Department of Health of the Generalitat de Catalunya, awarded on the 2016 call under the Strategic Plan for Research and Innovation in Health (PERIS) 2016-2020, modality incorporation of scientists and technologists, with reference SLT002/16/00308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Vrijheid.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bont, J., Díaz, Y., de Castro, M. et al. Ambient air pollution and the development of overweight and obesity in children: a large longitudinal study. Int J Obes 45, 1124–1132 (2021). https://doi.org/10.1038/s41366-021-00783-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00783-9

This article is cited by

Search

Quick links