Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Melanocortin receptor-mediated effects on obesity are distributed over specific hypothalamic regions

Abstract

Objective:

Reduction of melanocortin signaling in the brain results in obesity. However, where in the brain reduced melanocortin signaling mediates this effect is poorly understood.

Design:

We determined the effects of long-term inhibition of melanocortin receptor activity in specific brain regions of the rat brain. Melanocortin signaling was inhibited by injection of a recombinant adeno-associated viral (rAAV) vector that overexpressed Agouti-related peptide (AgRP) into the paraventricular nucleus (PVN), the ventromedial hypothalamus (VMH), the lateral hypothalamus (LH) or the accumbens shell (Acc).

Results:

Overexpression of AgRP in the rat PVN, VMH or LH increased bodyweight, the percentage of white adipose tissue, plasma leptin and insulin concentrations and food intake. Food intake was mainly increased because of an increase in meal size in the light and dark phases, after overexpression of AgRP in the PVN, LH or VMH. Overexpression of AgRP in the PVN or VMH reduced average body core temperature in the dark on day 40 post injection, whereas AgRP overexpression in the LH did not affect temperature. In addition, overexpression of AgRP in the PVN, LH or VMH did not significantly alter mRNA expression of AgRP, neuropeptide Y (NPY), pro-opiomelanocortin (POMC) or suppressor of cytokine signaling 3 (SOCS3) in the arcuate. Overexpression of AgRP in the Acc did not have any effect on the measured parameters.

Conclusions:

Reduction of melanocortin signaling in several hypothalamic regions increased meal size. However, there were brain area-specific effects on other parameters such as core temperature and plasma leptin concentrations. In a previous study, where NPY was overexpressed with an rAAV vector in the PVN and LH, meal frequency and meal size were increased respectively, whereas locomotor activity was reduced by NPY overexpression at both nuclei. Taken together, AgRP and NPY have complementary roles in energy balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Nijenhuis WA, Oosterom J, Adan RA . AgRP(83–132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol 2001; 15: 164–171.

    CAS  Google Scholar 

  2. Haskell-Luevano C, Monck EK . Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul Pept 2001; 99: 1–7.

    Article  CAS  Google Scholar 

  3. Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL . Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet 1997; 17: 273–274.

    Article  CAS  Google Scholar 

  4. Small CJ, Liu YL, Stanley SA, Connoley IP, Kennedy A, Stock MJ et al. Chronic CNS administration of Agouti-related protein (Agrp) reduces energy expenditure. Int J Obes Relat Metab Disord 2003; 27: 530–533.

    Article  CAS  Google Scholar 

  5. Semjonous NM, Smith KL, Parkinson JR, Gunner DJ, Liu YL, Murphy KG et al. Coordinated changes in energy intake and expenditure following hypothalamic administration of neuropeptides involved in energy balance. Int J Obes (Lond) 2009; 33: 775–785.

    Article  CAS  Google Scholar 

  6. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278: 135–138.

    Article  CAS  Google Scholar 

  7. Klebig ML, Wilkinson JE, Geisler JG, Woychik RP . Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur. Proc Natl Acad Sci USA 1995; 92: 4728–4732.

    Article  CAS  Google Scholar 

  8. Kas MJ, Tiesjema B, van Dijk G, Garner KM, Barsh GS, ter Brake O et al. Induction of brain-region-specific forms of obesity by agouti. J Neurosci 2004; 24: 10176–10181.

    Article  CAS  Google Scholar 

  9. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131–141.

    Article  CAS  Google Scholar 

  10. Chen AS, Metzger JM, Trumbauer ME, Guan XM, Yu H, Frazier EG et al. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res 2000; 9: 145–154.

    Article  CAS  Google Scholar 

  11. Ste ML, Miura GI, Marsh DJ, Yagaloff K, Palmiter RD . A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci USA 2000; 97: 12339–12344.

    Article  Google Scholar 

  12. Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD . Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci 2001; 4: 605–611.

    Article  CAS  Google Scholar 

  13. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000; 26: 97–102.

    Article  CAS  Google Scholar 

  14. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141: 3518–3521.

    Article  CAS  Google Scholar 

  15. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK . Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 2003; 457: 213–235.

    Article  CAS  Google Scholar 

  16. Liu H, Kishi T, Roseberry AG, Cai X, Lee CE, Montez JM et al. Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J Neurosci 2003; 23: 7143–7154.

    Article  CAS  Google Scholar 

  17. Roselli-Rehfuss L, Mountjoy KG, Robbins LS, Mortrud MT, Low MJ, Tatro JB et al. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci USA 1993; 90: 8856–8860.

    Article  CAS  Google Scholar 

  18. Kim MS, Rossi M, Abusnana S, Sunter D, Morgan DG, Small CJ et al. Hypothalamic localization of the feeding effect of agouti-related peptide and alpha-melanocyte-stimulating hormone. Diabetes 2000; 49: 177–182.

    Article  CAS  Google Scholar 

  19. Shrestha YB, Wickwire K, Giraudo SQ . Role of AgRP on Ghrelin-induced feeding in the hypothalamic paraventricular nucleus. Regul Pept 2006; 133: 68–73.

    Article  CAS  Google Scholar 

  20. Wirth MM, Giraudo SQ . Agouti-related protein in the hypothalamic paraventricular nucleus: effect on feeding. Peptides 2000; 21: 1369–1375.

    Article  CAS  Google Scholar 

  21. Berthoud HR . Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 2002; 26: 393–428.

    Article  Google Scholar 

  22. Tiesjema B, Adan RA, Luijendijk MC, Kalsbeek A, la Fleur SE . Differential effects of recombinant adeno-associated virus-mediated neuropeptide Y overexpression in the hypothalamic paraventricular nucleus and lateral hypothalamus on feeding behavior. J Neurosci 2007; 27: 14139–14146.

    Article  CAS  Google Scholar 

  23. Tiesjema B, la Fleur SE, Luijendijk MC, Brans MA, Lin EJ, During MJ et al. Viral mediated neuropeptide Y expression in the rat paraventricular nucleus results in obesity. Obesity (Silver Spring) 2007; 15: 2424–2435.

    Article  CAS  Google Scholar 

  24. Broekman MLD, Comer LA, Hyman BT, Siena-Esteves M . Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or-2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience 2006; 138: 501–510.

    Article  CAS  Google Scholar 

  25. Grimm D, Kay MA, Kleinschmidt JA . Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 2003; 7: 839–850.

    Article  CAS  Google Scholar 

  26. de Backer M, Brans M, Luijendijk M, Garner K, Adan R . Optimization of adeno-associated viral vector mediated gene delivery to the hypothalamus. Hum Gene Ther 2010; 21: 673–682.

    Article  CAS  Google Scholar 

  27. Schaeren-Wiemers N, Gerfin-Moser A . A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 1993; 100: 431–440.

    Article  CAS  Google Scholar 

  28. Kas MJH, van Dijk G, Scheurink AJW, Adan RAH . Agouti-related protein prevents self-starvation. Mol Psychiatry 2003; 8: 235–240.

    Article  CAS  Google Scholar 

  29. la Fleur SE, van Rozen AJ, Luijendijk MC, Groeneweg F, Adan RA . A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia. Int J Obes (Lond) 2009; 34: 537–546.

    Article  Google Scholar 

  30. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrari FK, Samulski T, Shenk T, Samulski RJ . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70: 3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Reimsnider S, Manfredsson FP, Muzyczka N, Mandel RJ . Time course of transgene expression after intrastriatal pseudotyped rAAV2/1, rAAV2/2, rAAV2/5, and rAAV2/8 transduction in the rat. Mol Ther 2007; 15: 1504–1511.

    Article  CAS  Google Scholar 

  33. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 2005; 123: 493–505.

    Article  CAS  Google Scholar 

  34. Kask A, Schioth HB . Tonic inhibition of food intake during inactive phase is reversed by the injection of the melanocortin receptor antagonist into the paraventricular nucleus of the hypothalamus and central amygdala of the rat. Brain Res 2000; 887: 460–464.

    Article  CAS  Google Scholar 

  35. Woods SC . The control of food intake: behavioral versus molecular perspectives. Cell Metab 2009; 9: 489–498.

    Article  CAS  Google Scholar 

  36. Erlanson-Albertsson C . Appetite regulation and energy balance. Acta Paediatr 2005; 94: 40–41.

    Article  Google Scholar 

  37. Tang-Christensen M, Vrang N, Ortmann S, Bidlingmaier M, Horvath TL, Tschop M . Central administration of ghrelin and agouti-related protein (83–132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology 2004; 145: 4645–4652.

    Article  CAS  Google Scholar 

  38. Santollo J, Eckel LA . Estradiol decreases the orexigenic effect of neuropeptide Y, but not agouti-related protein, in ovariectomized rats. Behav Brain Res 2008; 191: 173–177.

    Article  CAS  Google Scholar 

  39. Zheng H, Patterson LM, Phifer CB, Berthoud HR . Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am J Physiol Regul Integr Comp Physiol 2005; 289: R247–R258.

    Article  CAS  Google Scholar 

  40. Azzara AV, Sokolnicki JP, Schwartz GJ . Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibition. Physiol Behav 2002; 77: 411–416.

    Article  CAS  Google Scholar 

  41. Williams DL, Grill HJ, Weiss SM, Baird JP, Kaplan JM . Behavioral processes underlying the intake suppressive effects of melanocortin 3/4 receptor activation in the rat. Psychopharmacology (Berl) 2002; 161: 47–53.

    Article  CAS  Google Scholar 

  42. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S . Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348: 1085–1095.

    Article  CAS  Google Scholar 

  43. Creemers JW, Pritchard LE, Gyte A, Le Rouzic P, Meulemans S, Wardlaw SL et al. Agouti-related protein is posttranslationally cleaved by proprotein convertase 1 to generate agouti-related protein (AGRP)83-132: interaction between AGRP83-132 and melanocortin receptors cannot be influenced by syndecan-3. Endocrinology 2006; 147: 1621–1631.

    Article  CAS  Google Scholar 

  44. Skibicka KP, Grill HJ . Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology 2009; 150: 5351–5361.

    Article  CAS  Google Scholar 

  45. Wortley KE, Anderson KD, Yasenchak J, Murphy A, Valenzuela D, Diano S et al. Agouti-related protein-deficient mice display an age-related lean phenotype. Cell Metab 2005; 2: 421–427.

    Article  CAS  Google Scholar 

  46. Kreier F, Kap YS, Mettenleiter TC, van Heijningen C, van der Vliet J, Kalsbeek A et al. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 2006; 147: 1140–1147.

    Article  CAS  Google Scholar 

  47. Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ . Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 2005; 289: R1467–R1476.

    Article  CAS  Google Scholar 

  48. Song CK, Vaughan CH, Keen-Rhinehart E, Harris RB, Richard D, Bartness TJ . Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am J Physiol Regul Integr Comp Physiol 2008; 295: R417–R428.

    Article  CAS  Google Scholar 

  49. Tallam LS, Stec DE, Willis MA, da Silva AA, Hall JE . Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension 2005; 46: 326–332.

    Article  CAS  Google Scholar 

  50. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med 2009; 360: 44–52.

    Article  CAS  Google Scholar 

  51. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM et al. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest 2007; 117: 3475–3488.

    Article  CAS  Google Scholar 

  52. Arase K, Sakaguchi T, Bray GA . Lateral hypothalamic lesions and activity of the sympathetic nervous system. Life Sci 1987; 41: 657–662.

    Article  CAS  Google Scholar 

  53. Yoshida T, Kemnitz JW, Bray GA . Lateral hypothalamic lesions and norepinephrine turnover in rats. J Clin Invest 1983; 72: 919–927.

    Article  CAS  Google Scholar 

  54. Sakaguchi T, Arase K, Bray GA . Sympathetic activity and food intake of rats with ventromedial hypothalamic lesions. Int J Obes 1988; 12: 285–291.

    CAS  PubMed  Google Scholar 

  55. Takahashi A, Shimazu T . Hypothalamic regulation of lipid metabolism in the rat: effect of hypothalamic stimulation on lipolysis. J Auton Nerv Syst 1981; 4: 195–205.

    Article  CAS  Google Scholar 

  56. Zhong MK, Duan YC, Chen AD, Xu B, Gao XY, De W et al. Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol 2008; 93: 746–753.

    Article  Google Scholar 

  57. Gettys TW, Harkness PJ, Watson PM . The beta 3-adrenergic receptor inhibits insulin-stimulated leptin secretion from isolated rat adipocytes. Endocrinology 1996; 137: 4054–4057.

    Article  CAS  Google Scholar 

  58. Cong L, Chen K, Li J, Gao P, Li Q, Mi S et al. Regulation of adiponectin and leptin secretion and expression by insulin through a PI3K-PDE3B dependent mechanism in rat primary adipocytes. Biochem J 2007; 403: 519–525.

    Article  CAS  Google Scholar 

  59. Kishi T, Aschkenasi CJ, Choi BJ, Lopez ME, Lee CE, Liu H et al. Neuropeptide Y Y1 receptor mRNA in rodent brain: distribution and colocalization with melanocortin-4 receptor. J Comp Neurol 2005; 482: 217–243.

    Article  CAS  Google Scholar 

  60. Tiesjema B, la Fleur SE, Luijendijk MC, Adan RA . Sustained NPY overexpression in the PVN results in obesity via temporarily increasing food intake. Obesity (Silver Spring) 2009; 17: 1448–1450.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in Utrecht, the Netherlands, and was supported by the Netherlands Organization for Scientific Research (NWO Grant No. 90339175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A H Adan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Backer, M., la Fleur, S., Brans, M. et al. Melanocortin receptor-mediated effects on obesity are distributed over specific hypothalamic regions. Int J Obes 35, 629–641 (2011). https://doi.org/10.1038/ijo.2010.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.169

Keywords

This article is cited by

Search

Quick links