Soft materials articles within Nature Materials

Featured

  • Letter |

    The oral delivery of small interfering RNA (siRNA) to diseased intestinal tissue is challenging because of the harsh environment created by gastrointestinal fluids and mucosa. Now, such delivery of siRNA to sites of intestinal inflammation is achieved using polythioketal nanoparticles and gene expression is successfully inhibited in the inflamed tissue.

    • D. Scott Wilson
    • , Guillaume Dalmasso
    •  & Niren Murthy
  • Letter |

    DNA-functionalized, anisotropic nanostructures, such as triangular nanoprisms and nanorods, are shown to assemble by means of DNA hybridization into colloidal crystal structures. The crystallization parameters of these nanostructures, and hence the dimensionality and symmetry of the resultant superlattice, are strongly influenced by particle shape.

    • Matthew R. Jones
    • , Robert J. Macfarlane
    •  & Chad A. Mirkin
  • Letter |

    Polymeric impurities in liquid crystals are known to perturb liquid-crystalline order. It is now shown that spatial gradients in the order, created by illuminating the materials with ultraviolet light, can be used to generate forces that allow the polymers to be concentrated or dispersed in the liquid crystal.

    • Sadaki Samitsu
    • , Yoichi Takanishi
    •  & Jun Yamamoto
  • Article |

    The selective reaction of one part of a bifunctional molecule is a fundamental challenge in heterogeneous catalysis. Modifying a supported palladium catalyst with alkanethiol self-assembled monolayers is now shown to increase selectivity for the hydrogenation of 1-epoxy-3-butane to 1-epoxybutane.

    • Stephen T. Marshall
    • , Marykate O’Brien
    •  & J. William Medlin
  • Article |

    Structure–property relationships between material properties and stem cell behaviour are investigated using high-throughput methods. The data identify the optimal substrates within a range of different polymeric surfaces to support the growth and self-renewal of human embryonic stem cells from fully dissociated single cells.

    • Ying Mei
    • , Krishanu Saha
    •  & Daniel G. Anderson
  • News & Views |

    Imprinting molecular memory on the surface of polymer nanoparticles creates artificial antibodies that can recognize and neutralize a toxic peptide in vivo.

    • Karsten Haupt
  • Article |

    Synthetic solid-state nanopores are of interest at present for their use as single-molecule sensors for characterization and detection of biomolecules. By using self-assembly evaporation and atomic-layer deposition, kinked silica nanopores are shown to exhibit reduction in DNA-translocation velocity and selectivity.

    • Zhu Chen
    • , Yingbing Jiang
    •  & C. Jeffrey Brinker
  • News & Views |

    Heating and cooling of peptide amphiphile suspensions converts disorganized nanofibres into liquid-crystalline nanofibre bundles that gel on addition of salts. The noodle-shaped strings of gel can entrap and align cells.

    • Timothy J. Deming
  • News & Views |

    A cationic nanosized hydrogel (nanogel) shows controlled antigen delivery in vivo following intranasal administration and hence holds promise for a clinically effective adjuvant-free and needle-free vaccine system.

    • Herman F. Staats
    •  & Kam W. Leong
  • Article |

    Peptide-based molecules that self-assemble into lamellar plaques with fibrous texture on heating, subsequently break on cooling to form long-range aligned bundles of nanofibres. This thermal route to monodomain gels is compatible for living cells and allows the formation of noodle-like viscoelastic strings of any length.

    • Shuming Zhang
    • , Megan A. Greenfield
    •  & Samuel I. Stupp
  • Letter |

    For metal–organic frameworks to be used for applications such as gas storage it is necessary to direct their assembly. Here, thin crystalline films of metal–organic frameworks are fabricated on a solid surface with structural growth control over both in-plane and out-of-plane orientations relative to the substrate.

    • Rie Makiura
    • , Soichiro Motoyama
    •  & Hiroshi Kitagawa
  • Letter |

    Bulk metallic glasses (BMGs) show good compressive mechanical properties that make them attractive for applications. However, BMGs tend to fail under tensile strain. Through secondary phases these problems can be remedied to some degree. A mechanism is now demonstrated where BMGs show enhanced tensile ductility though the deformation-induced precipitation of nanocrystals.

    • S. Pauly
    • , S. Gorantla
    •  & J. Eckert
  • News & Views |

    So far, flow-induced transitions and structures formed by the assembly of surfactant micelles have been reversible. Now, a microporous extensional flow process forms a permanent gel, which remains intact even after flow has stopped.

    • Matteo Pasquali
  • Article |

    The fact that cells sense and respond to the mechanical properties of their environment is now a well-explored concept, although the mechanism of this response is still unknown. Now it is shown that cells themselves can mechanically manipulate the materials surrounding them by pulling at connective points, providing a feedback loop to influence cell fate.

    • Nathaniel Huebsch
    • , Praveen R. Arany
    •  & David J. Mooney
  • Article |

    Peptoids are synthetic polymers designed to mimic the structure and functionality of proteins. When a one-to-one blend of two oppositely charged peptoids is mixed in solution, giant, 2.7-nm-thick free-floating sheets are formed. The sheets can specifically bind a corresponding protein, and offer potential for producing functional two-dimensional nanostructures in the future.

    • Ki Tae Nam
    • , Sarah A. Shelby
    •  & Ronald N. Zuckermann
  • Letter |

    Approaches for controlling surface wettability and liquid spreading are numerous and diverse, but introducing directionality to the control of these phenomena is far from trivial. Nanostructured surfaces are now used to allow the propagation of a liquid in a single direction, while constraining it in the other three directions.

    • Kuang-Han Chu
    • , Rong Xiao
    •  & Evelyn N. Wang
  • Article |

    Viscoelastic gels can be made by using flow to induce structure into solutions containing surfactant micelles. However, the gels disintegrate soon after flow stoppage. By using a microfluidic-assisted laminar-flow process to generate very high extension rates, it is now shown that permanent gels can be made, creating new opportunities for applications.

    • Mukund Vasudevan
    • , Eric Buse
    •  & Radhakrishna Sureshkumar
  • Article |

    Silicon-based lithium-ion batteries are attractive because in principle they offer higher specific capacities than conventional graphite. A hierarchical bottom-up approach is now used to prepare lithium-ion anodes with improved reversible capacities and stable electrochemical performance.

    • A. Magasinski
    • , P. Dixon
    •  & G. Yushin
  • Article |

    The origin of the effect that a magnetic field has on various electronic properties of organic semiconductors is still controversial. It is now shown that substituting hydrogen for deuterium in conducting polymers changes the response to a magnetic field substantially, proving the essential part played by hyperfine interaction in this effect.

    • Tho D. Nguyen
    • , Golda Hukic-Markosian
    •  & Z. Valy Vardeny
  • Letter |

    The mechanical properties of many materials are different on the nanoscale than they are in the bulk. In the case of metallic glasses, nanometre-scale samples show enhanced ductility. This tensile ductility has now been quantified for samples with diameters down to 100 nm, where a new regime of increased ductility during deformation is observed.

    • Dongchan Jang
    •  & Julia R. Greer
  • News & Views |

    Stable particle-like molecular architectures are written in a frustrated chiral-nematic liquid crystal using a vortex laser beam. This fundamentally new mechanism to form toroidal features with anisotropic optical properties has great potential to create new applications in liquid-crystal photonics.

    • Dirk J. Broer
  • Letter |

    In most suspensions viscosity decreases with increasing shear rate. The opposite effect, shear thickening, is a problem for industrial applications. An understanding of how particle interactions in suspensions influence shear thickening may lead to a solution of this problem through the design of smart suspensions.

    • Eric Brown
    • , Nicole A. Forman
    •  & Heinrich M. Jaeger
  • Letter |

    Creating p–n junctions using semiconducting polymers has proved to be challenging because of difficulties in depositing semiconducting polymer films. Now, by using a cationic conjugated-polymer electrolyte and a neutral conjugated-polymer layer, devices with a fixed bilayer organic p–n junction and fast response times have been fabricated.

    • Corey V. Hoven
    • , Huiping Wang
    •  & Guillermo C. Bazan
  • Review Article |

    Stimuli-responsive polymers can be engineered, in both film and colloid forms, to respond to a variety of inputs, from temperature to pH. The inherent flexibility in their structure and responses result in materials that lend themselves to applications ranging from drug delivery to sensing. Recent advances and future challenges in this direction are reviewed.

    • Martien A. Cohen Stuart
    • , Wilhelm T. S. Huck
    •  & Sergiy Minko
  • Letter |

    Jamming transitions of disordered systems such as foams, gels and colloidal suspensions, describe the change from a liquid to a solid state. An investigation of the three-dimensional properties of jamming shows how, for example, unjamming occurs simultaneously in all directions even if it is induced in one direction only.

    • G. Ovarlez
    • , Q. Barral
    •  & P. Coussot
  • News & Views |

    Experiments have shown that the physical characteristics of the matrix surrounding a stem cell can affect its behaviour. This picture gets further complicated by studies of stem cells and their differentiated counterparts that show that the cells' own softness also has a clear role in how they respond to stress.

    • Andrew W. Holle
    •  & Adam J. Engler