Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface nano-architecture of a metal–organic framework

Abstract

The rational assembly of ultrathin films of metal–organic frameworks (MOFs)—highly ordered microporous materials1,2,3,4,5—with well-controlled growth direction and film thickness is a critical and as yet unrealized issue for enabling the use of MOFs in nanotechnological devices, such as sensors, catalysts and electrodes for fuel cells. Here we report the facile bottom-up fabrication at ambient temperature of such a perfect preferentially oriented MOF nanofilm on a solid surface (NAFS-1), consisting of metalloporphyrin building units. The construction of NAFS-1 was achieved by the unconventional integration in a modular fashion of a layer-by-layer growth technique coupled with the Langmuir–Blodgett method. NAFS-1 is endowed with highly crystalline order both in the out-of-plane and in-plane orientations to the substrate, as demonstrated by synchrotron X-ray surface crystallography. The proposed structural model incorporates metal-coordinated pyridine molecules projected from the two-dimensional sheets that allow each further layer to dock in a highly ordered interdigitated manner in the growth of NAFS-1. We expect that the versatility of the solution-based growth strategy presented here will allow the fabrication of various well-ordered MOF nanofilms, opening the way for their use in a range of important applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the fabrication method of NAFS-1.
Figure 2: Layer-by-layer film growth of NAFS-1 followed by ultraviolet–visible absorption spectroscopy.
Figure 3: Out-of-plane synchrotron XRD patterns of NAFS-1.
Figure 4: In-plane synchrotron XRD patterns and the derived structural model for NAFS-1.

Similar content being viewed by others

References

  1. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  2. Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  3. Seo, J. S. et al. A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    Article  CAS  Google Scholar 

  4. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  5. Li, Q. et al. Docking in metal–organic frameworks. Science 325, 855–859 (2009).

    Article  CAS  Google Scholar 

  6. Sheldon, R. A. Metalloporphyrins in Catalytic Oxidations (Marcel Dekker, 1994).

    Google Scholar 

  7. Abrahams, B. F., Hoskins, B. F., Michail, D. M. & Robson, R. Assembly of porphyrin building blocks into network structures with large channels. Nature 369, 727–729 (1994).

    Article  CAS  Google Scholar 

  8. Goldberg, I. Crystal engineering of porphyrin framework solids. Chem. Commun. 1243–1254 (2005).

  9. Choi, E. Y. et al. Pillared porphyrin homologous series: Intergrowth metal–organic frameworks. Inorg. Chem. 48, 426–428 (2009).

    Article  CAS  Google Scholar 

  10. Kosal, M. E., Chou, J. H., Wilson, S. R. & Suslick, K. S. A functional zeolite analogue assembled from metalloporphyrins. Nature Mater. 1, 118–121 (2002).

    Article  CAS  Google Scholar 

  11. Suslick, K. S. et al. Microporous porphyrin solids. Acc. Chem. Res. 38, 283–291 (2005).

    Article  CAS  Google Scholar 

  12. Shultz, A. M., Farha, O. K., Hupp, J. T. & Nguyen, S. T. A catalytically active, permanently microporous MOF with metalloporphyrin struts. J. Am. Chem. Soc. 131, 4204–4205 (2009).

    Article  CAS  Google Scholar 

  13. Zacher, D., Shekhah, O., Wöll, C. & Fischer, R. A. Thin films of metal–organic frameworks. Chem. Soc. Rev. 38, 1418–1429 (2009).

    Article  CAS  Google Scholar 

  14. Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–250 (2009).

    Article  CAS  Google Scholar 

  15. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supra molecular surface assemblies. Nature 424, 1029–1031 (2003).

    Article  CAS  Google Scholar 

  16. Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).

    Article  CAS  Google Scholar 

  17. Madueno, R., Raisanen, M. T., Silien, C. & Buck, M. Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature 454, 618–621 (2008).

    Article  CAS  Google Scholar 

  18. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  19. Hermes, S., Schroder, F., Chelmowski, R., Wöll, C. & Fischer, R. A. Selective nucleation and growth of metal–organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005).

    Article  CAS  Google Scholar 

  20. Biemmi, E., Scherb, C. & Bein, T. Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3·xH2O tunable with functionalized self-assembled monolayers. J. Am. Chem. Soc. 129, 8054–8055 (2007).

    Article  CAS  Google Scholar 

  21. Scherb, C., Schödel, A. & Bein, T. Directing the structure of metal–organic frameworks by oriented surface growth on an organic monolayer. Angew. Chem. Int. Ed. 57, 5777–5779 (2008).

    Article  Google Scholar 

  22. Shekhah, O. et al. Step-by-step route for the synthesis of metal organic frameworks. J. Am. Chem. Soc. 129, 15118–15119 (2007).

    Article  CAS  Google Scholar 

  23. Shekhah, O. et al. Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nature Mater. 8, 481–484 (2009).

    Article  CAS  Google Scholar 

  24. Yang, H. C. et al. Growth and characterization of metal(II) alkanebisphosphonate multilayer thin films on gold surfaces. J. Am. Chem. Soc. 115, 11855–11862 (1993).

    Article  CAS  Google Scholar 

  25. Kanaizuka, K. et al. Construction of highly oriented crystalline surface coordination polymers composed of copper dithiooxamide complexes. J. Am. Chem. Soc. 130, 15778–15779 (2008).

    Article  CAS  Google Scholar 

  26. Ito, Y. et al. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 131, 9396–9404 (2009).

    Article  CAS  Google Scholar 

  27. Töllner, K., Biro, R. P., Lahav, M. & Milstein, D. Impact of molecular order in Langmuir–Blodgett films on catalysis. Science 278, 2100–2102 (1997).

    Article  Google Scholar 

  28. Takamoto, D. Y. et al. Stable ordering in Langmuir–Blodgett films. Science 293, 1292–1295 (2001).

    Article  CAS  Google Scholar 

  29. Qian, D. J., Nakamura, C. & Miyake, J. Multiporphyrin array from interfacial metal-mediated assembly and its Langmuir–Blodgett films. Langmuir 16, 9615–9619 (2000).

    Article  CAS  Google Scholar 

  30. Qian, D. J., Nakamura, C. & Miyake, J. Layer-by-layer assembly of metal mediated multiporphyrin arrays. Chem. Commun. 2312–2313 (2001).

Download references

Acknowledgements

We thank JST (CREST), NEDO and JSPS (No. 20350030 and 20655030) and the Global COE Program ‘Science for Future Molecular Systems’ for financial support, SPring-8 for access to the synchrotron X-ray facilities under the Priority Nanotechnology Support Program administered by JASRI (2008B1801, 2009A1703) and under proposal 2008B2205 and the Center of Advanced Instrumental Analysis, Kyushu University for the use of the FT-IR spectrometer and the ESCA system.

Author information

Authors and Affiliations

Authors

Contributions

This work has been carried out mainly by JST-CREST and METI-NEDO projects where H.K. is a project leader and responsible for all. R.M. designed this study, interpreted the results and carried out sample preparation, XPS, infrared and AFM characterization and structural model construction. R.M. and Y.U. carried out Langmuir–Blodgett film fabrication and absorption spectra measurements. O.S. was responsible for supervising the synchrotron XRD measurements. R.M. carried out the synchrotron XRD measurements with the help of S.M. and H.Y. All authors commented on the manuscript. R.M and H.K. were responsible for writing the manuscript.

Corresponding authors

Correspondence to Rie Makiura or Hiroshi Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Fig. S1-S10 (PDF 3255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makiura, R., Motoyama, S., Umemura, Y. et al. Surface nano-architecture of a metal–organic framework. Nature Mater 9, 565–571 (2010). https://doi.org/10.1038/nmat2769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing