Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA translocation through an array of kinked nanopores

Abstract

Synthetic solid-state nanopores are being intensively investigated as single-molecule sensors for detection and characterization of DNA, RNA and proteins. This field has been inspired by the exquisite selectivity and flux demonstrated by natural biological channels and the dream of emulating these behaviours in more robust synthetic materials that are more readily integrated into practical devices. So far, the guided etching of polymer films, focused ion-beam sculpting, and electron-beam lithography and tuning of silicon nitride membranes have emerged as three promising approaches to define synthetic solid-state pores with sub-nanometre resolution. These procedures have in common the formation of nominally cylindrical or conical pores aligned normal to the membrane surface. Here we report the formation of ‘kinked’ silica nanopores, using evaporation-induced self-assembly, and their further tuning and chemical derivatization using atomic-layer deposition. Compared with ‘straight through’ proteinaceous nanopores of comparable dimensions, kinked nanopores exhibit up to fivefold reduction in translocation velocity, which has been identified as one of the critical issues in DNA sequencing. Additionally, we demonstrate an efficient two-step approach to create a nanopore array exhibiting nearly perfect selectivity for ssDNA over dsDNA. We show that a coarse-grained drift–diffusion theory with a sawtooth-like potential can reasonably describe the velocity and translocation time of DNA through the pore. By control of pore size, length and shape, we capture the main functional behaviours of protein pores in our solid-state nanopore system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images of porous and Pt pore-filled thin-film mesophases.
Figure 2: X-ray scattering analyses and corresponding structure of the ordered, porous, silica thin-film mesophase membrane used for the DNA-translocation experiments.
Figure 3: Experimental platform for monitoring DNA translocation through a freely suspended kinked nanopore membrane.
Figure 4: Analysis of DNA translocation through a kinked-nanopore array.
Figure 5: Dynamics of dsDNA translocation through a kinked-nanopore array.
Figure 6: Analysis of ssDNA translocation through a kinked-nanopore array after APTMS ALD treatment.

Similar content being viewed by others

References

  1. Coulter, W. H. Means for counting particles suspended in a fluid. US Patent 2,656,508 (1953).

  2. Siwy, Z. & Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).

    Article  CAS  Google Scholar 

  3. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  4. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nature Mater. 2, 537–540 (2003).

    Article  CAS  Google Scholar 

  5. Ho, C. et al. Electrolytic transport through a synthetic nanometer-diameter pore. Proc. Natl Acad. Sci. USA 102, 10445–10450 (2005).

    Article  CAS  Google Scholar 

  6. Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  7. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  CAS  Google Scholar 

  8. Nakane, J. J., Akeson, M. & Marziali, A. Nanopore sensors for nucleic acid analysis. J. Phys. Condens. Matter 15, R1365–R1393 (2003).

    Article  CAS  Google Scholar 

  9. Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S. & Li, J. L. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005).

    Article  CAS  Google Scholar 

  10. de Zoysa, R. S. S. et al. Slowing DNA translocation through nanopores using a solution containing organic salts. J. Phys. Chem. B 113, 13332–13336 (2009).

    Article  CAS  Google Scholar 

  11. Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).

    Article  CAS  Google Scholar 

  12. Lu, Y. F. et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating. Nature 389, 364–368 (1997).

    Article  CAS  Google Scholar 

  13. Brinker, C. J., Lu, Y. F., Sellinger, A. & Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579–585 (1999).

    Article  CAS  Google Scholar 

  14. Grosso, D. et al. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 14, 309–322 (2004).

    Article  CAS  Google Scholar 

  15. Xomeritakis, G. et al. Aerosol-assisted deposition of surfactant-templated mesoporous silica membranes on porous ceramic supports. Microporous Mesoporous Mater. 66, 91–101 (2003).

    Article  CAS  Google Scholar 

  16. Besson, S., Ricolleau, C., Gacoin, T., Jacquiod, C. & Boilot, J. P. A new 3D organization of mesopores in oriented CTAB silica films. J. Phys. Chem. B 104, 12095–12097 (2000).

    Article  CAS  Google Scholar 

  17. Liu, N. G., Assink, R. A., Smarsly, B. & Brinker, C. J. Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable –NH2 groups. Chem. Commun. 1146–1147 (2003).

  18. Liu, N. G., Assink, R. A. & Brinker, C. J. Synthesis and characterization of highly ordered mesoporous thin films with–COOH terminated pore surfaces. Chem. Commun. 370–371 (2003).

  19. Urade, V. N., Wei, T. C., Tate, M. P., Kowalski, J. D. & Hillhouse, H. W. Nanofabrication of double-gyroid thin films. Chem. Mater. 19, 768–777 (2007).

    CAS  Google Scholar 

  20. Tate, M. P. et al. Simulation and interpretation of 2D diffraction patterns from self-assembled nanostructured films at arbitrary angles of incidence: From grazing incidence (above the critical angle) to transmission perpendicular to the substrate. J. Phys. Chem. B 110, 9882–9892 (2006).

    Article  CAS  Google Scholar 

  21. Falcaro, P., Grosso, D., Amenitsch, H. & Innocenzi, P. Silica orthorhombic mesostructured films with low refractive index and high thermal stability. J. Phys. Chem. B 108, 10942–10948 (2004).

    Article  CAS  Google Scholar 

  22. Besson, S., Ricolleau, C., Gacoin, T., Jacquiod, C. & Boilot, J. P. Highly ordered orthorhombic mesoporous silica films. Microporous Mesoporous Mater. 60, 43–49 (2003).

    Article  CAS  Google Scholar 

  23. Ricco, A. J., Frye, G. C. & Martin, S. J. Determination of BET surface-areas of porous thin-films using surface acoustic-wave devices. Langmuir 5, 273–276 (1989).

    Article  CAS  Google Scholar 

  24. Patterson, N. et al. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection. Nanotechnology 19, 235304 (2008).

    Article  CAS  Google Scholar 

  25. Jiang, Y. B., Liu, N. G., Gerung, H., Cecchi, J. L. & Brinker, C. J. Nanometer-thick conformal pore sealing of self-assembled mesoporous silica by plasma-assisted atomic layer deposition. J. Am. Chem. Soc. 128, 11018 (2006).

    Article  CAS  Google Scholar 

  26. Khardani, M., Bouaicha, M. & Bessais, B. Bruggeman effective medium approach for modeling optical properties of porous silicon: Comparison with experiment. Phys. Status Solidi 4, 1986–1990 (2007).

    Article  CAS  Google Scholar 

  27. Cameron, M. A., Gartland, I. P., Smith, J. A., Diaz, S. F. & George, S. M. Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes: Pore reduction and effect of surface species on gas transport. Langmuir 16, 7435–7444 (2000).

    Article  CAS  Google Scholar 

  28. Ek, S. et al. Atomic layer deposition of a high-density aminopropylsiloxane network on silica through sequential reactions of gamma-aminopropyltrialkoxysilanes and water. Langmuir 19, 10601–10609 (2003).

    Article  CAS  Google Scholar 

  29. Heng, J. B. et al. The electromechanics of DNA in a synthetic nanopore. Biophys. J. 90, 1098–1106 (2006).

    Article  CAS  Google Scholar 

  30. Li, J. L., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J. A. DNA molecules and configurations in a solid-state nanopore microscope. Nature Mater. 2, 611–615 (2003).

    Article  CAS  Google Scholar 

  31. Smeets, R. M. M. et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2006).

    Article  CAS  Google Scholar 

  32. Chen, P. et al. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 4, 2293–2298 (2004).

    Article  CAS  Google Scholar 

  33. Storm, A. J., Chen, J. H., Zandbergen, H. W. & Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71, 051903 (2005).

    Article  CAS  Google Scholar 

  34. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  CAS  Google Scholar 

  35. Lubensky, D. K. & Nelson, D. R. Driven polymer translocation through a narrow pore. Biophys. J. 77, 1824–1838 (1999).

    Article  CAS  Google Scholar 

  36. Wanunu, M., Sutin, J., McNally, B., Chow, A. & Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 95, 4716–4725 (2008).

    Article  CAS  Google Scholar 

  37. Storm, A. J. et al. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197 (2005).

    Article  CAS  Google Scholar 

  38. Deamer, D. W. & Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35, 817–825 (2002).

    Article  CAS  Google Scholar 

  39. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  Google Scholar 

  40. Maglia, G., Restrepo, M. R., Mikhailova, E. & Bayley, H. Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc. Natl Acad. Sci. USA 105, 19720–19725 (2008).

    Article  CAS  Google Scholar 

  41. McNally, B., Wanunu, M. & Meller, A. Electromechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores. Nano Lett. 8, 3418–3422 (2008).

    Article  CAS  Google Scholar 

  42. Skinner, G. M., van den Hout, M., Broekmans, O., Dekker, C. & Dekker, N. H. Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. Nano Lett. 9, 2953–2960 (2009).

    Article  CAS  Google Scholar 

  43. Meller, A. Dynamics of polynucleotide transport through nanometre-scale pores. J. Phys. Condens. Matter 15, R581–R607 (2003).

    Article  CAS  Google Scholar 

  44. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    Article  CAS  Google Scholar 

  45. Smith, D. E., Perkins, T. T. & Chu, S. Dynamical scaling of DNA diffusion coefficients. Macromolecules 29, 1372–1373 (1996).

    Article  CAS  Google Scholar 

  46. Lam, P. M., Liu, F. & Ou-Yang, Z. C. Driven translocation of a polynucleotide chain through a nanopore: A continuous time Monte Carlo study. Phys. Rev. E 74, 011911 (2006).

    Article  Google Scholar 

  47. Lua, R. C. & Grosberg, A. Y. First passage times and asymmetry of DNA translocation. Phys. Rev. E 72, 061918 (2005).

    Article  Google Scholar 

  48. Mathe, J., Aksimentiev, A., Nelson, D. R., Schulten, K. & Meller, A. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc. Natl Acad. Sci. USA 102, 12377–12382 (2005).

    Article  CAS  Google Scholar 

  49. Peng, H. B. & Ling, X. S. S. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20, 185101 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Air Force Office of Scientific Research grant FA 9550-10-1-0054, DOE Basic Energy Sciences grant DE-FG02-02-ER15368, US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Sandia National Laboratories’ LDRD program. Z.C. acknowledges DOE Basic Energy Sciences grant DE-FG02-02-ER15368 for carrying out nanopore-array fabrication and DNA translocation. D.R.D. acknowledges support from DOE Basic Energy Science grant DE-FG02-02-ER15368 and the Air Force Office of Scientific Research grant FA 9550-10-1-0054 for carrying out GISAXS and electrochemical deposition experiments. C.J.B. acknowledges the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and Sandia National Laboratories’ LDRD program for conceiving the experiments and writing the paper. Y.J. acknowledges Sandia National Laboratories’ LDRD program for carrying out ALD experiments. GISAXS experiments in this paper were conducted at the Advanced Photon Source at Argonne National Laboratory. Use of this facility is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357.

Sandia National Laboratories is a multiprogramme laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Contributions

Z.C., C.J.B. and D.R.D. wrote the paper. C.J.B. conceived and directed the research. Z.C. carried out nanopore-array fabrication, DNA translocation and Fourier-transform infrared and N2 adsorption experiments. Z.C. and Y.J. carried out TEM characterization and ALD experiments. D.R.D., H.W.H. and S.J.G. carried out GISAXS experiments. D.P.A. and C.H. carried out FIB lithography experiments. N.L. contributed to the DNA translocation set-up. D.R.D. carried out electrochemical-deposition experiments. N.R.A. and X.J. developed the transport model and carried out the simulations. Z.C. and N.Z. carried out PCR experiments.

Corresponding author

Correspondence to C. Jeffrey Brinker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Jiang, Y., Dunphy, D. et al. DNA translocation through an array of kinked nanopores. Nature Mater 9, 667–675 (2010). https://doi.org/10.1038/nmat2805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing