Quantum dots articles within Nature

Featured

  • Article
    | Open Access

    Using a cryogenic 300-mm wafer prober, a new approach for the testing of hundreds of industry-manufactured spin qubit devices at 1.6 K provides high-volume data on performance, allowing optimization of the complementary metal–oxide–semiconductor (CMOS)-compatible fabrication process.

    • Samuel Neyens
    • , Otto K. Zietz
    •  & James S. Clarke
  • Article
    | Open Access

    Colloidal quantum dot devices demonstrating electrically pumped amplified spontaneous emission are described, showing strong, broadband optical gain and bright edge emission, opening the path to solution-processable laser diodes.

    • Namyoung Ahn
    • , Clément Livache
    •  & Victor I. Klimov
  • Article |

    A minimal artificial Kitaev chain can be realized by using two spin-polarized quantum dots in an InSb nanowire strongly coupled by both elastic co-tunnelling and crossed Andreev reflection.

    • Tom Dvir
    • , Guanzhong Wang
    •  & Leo P. Kouwenhoven
  • Article |

    Ultrasmall monodisperse perovskite quantum dots are synthesized in situ on a substrate via ligand structure regulation, yielding the highest external quantum efficiency blue perovskite LEDs reported so far.

    • Yuanzhi Jiang
    • , Changjiu Sun
    •  & Mingjian Yuan
  • Article |

    Spin correlation experiments are demonstrated in an electron entangler device based on the ‘splitting’ of Cooper pairs from a superconductor, which can potentially be used to investigate many fundamental phases and processes related to the electron spin.

    • Arunav Bordoloi
    • , Valentina Zannier
    •  & Andreas Baumgartner
  • Article
    | Open Access

    By using three silicon spin qubits to construct a phase-correcting code, quantum error correction is implemented and protection of the three-qubit state against any phase-flip error on one of the three qubits is demonstrated.

    • Kenta Takeda
    • , Akito Noiri
    •  & Seigo Tarucha
  • Article
    | Open Access

    A method for mapping phonon momenta reveals non-equilibrium phonon dynamics at nanoscale interfaces enabling study of actual nanodevices and aiding understanding of heat dissipation near nanoscale hotspots.

    • Chaitanya A. Gadre
    • , Xingxu Yan
    •  & Xiaoqing Pan
  • Article |

    Single- and two-qubit gate fidelities above the fault-tolerance threshold for quantum computation are demonstrated in silicon quantum dots by fast electrical control using a micromagnet-induced gradient field and tunable coupling.

    • Akito Noiri
    • , Kenta Takeda
    •  & Seigo Tarucha
  • Article
    | Open Access

    A spin-based quantum processor in silicon achieves single-qubit and two-qubit gate fidelities above 99.5% using gate-set tomography, exceeding the theoretical threshold required for fault-tolerant quantum computing.

    • Xiao Xue
    • , Maximilian Russ
    •  & Lieven M. K. Vandersypen
  • Article |

    Through precise structural engineering, perovskite nanocrystals are co-assembled with other nanocrystal materials to form a range of binary and ternary perovskite-type superlattices that exhibit superfluorescence.

    • Ihor Cherniukh
    • , Gabriele Rainò
    •  & Maksym V. Kovalenko
  • Article |

    Using germanium quantum dots, a four-qubit processor capable of single-, two-, three-, and four-qubit gates, demonstrated by the creation of four-qubit Greenberger−Horne−Zeilinger states, is the largest yet realized with solid-state electron spins.

    • Nico W. Hendrickx
    • , William I. L. Lawrie
    •  & Menno Veldhorst
  • Article |

    The binding of multidentate ligands to the surface of lead halide perovskite nanocrystals suppresses the formation of surface defects that result in halide segregation, yielding materials with efficient and colour-stable red emission.

    • Yasser Hassan
    • , Jong Hyun Park
    •  & Henry J. Snaith
  • Article |

    Cadmium-free blue quantum dot light-emitting diodes are constructed with a quantum yield of unity, an efficiency at the theoretical limit, high brightness and long operational lifetime.

    • Taehyung Kim
    • , Kwang-Hee Kim
    •  & Eunjoo Jang
  • Article |

    Lithographically defined qubits are shown to support full two-qubit logic at temperatures above one kelvin by using electron spin states in silicon quantum dots.

    • L. Petit
    • , H. G. J. Eenink
    •  & M. Veldhorst
  • Article |

    Spin qubits based on hole states in strained germanium could offer the most scalable platform for quantum computation.

    • N. W. Hendrickx
    • , D. P. Franke
    •  & M. Veldhorst
  • Article |

    A method of engineering efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes (QD-LEDs) has improved their performance to the level of state-of-the-art cadmium-containing QD-LEDs, removing the problem of the toxicity of cadmium in large-panel displays.

    • Yu-Ho Won
    • , Oul Cho
    •  & Eunjoo Jang
  • Letter |

    Transmission of single-spin and entangled quantum states without the physical displacement of electrons is demonstrated in a quadruple quantum dot array using the Heisenberg exchange interaction and coherent SWAP gates.

    • Yadav P. Kandel
    • , Haifeng Qiao
    •  & John M. Nichol
  • Letter |

    A fast, high-fidelity two-qubit exchange gate between phosphorus donor electron spin qubits in silicon is demonstrated by creating a tunable exchange interaction between two electrons bound to phosphorus atom qubits.

    • Y. He
    • , S. K. Gorman
    •  & M. Y. Simmons
  • Letter |

    Two-qubit logic gates in a silicon-based system are shown (using randomized benchmarking) to have high gate fidelities of operation and are used to generate Bell states, a step towards solid-state quantum computation.

    • W. Huang
    • , C. H. Yang
    •  & A. S. Dzurak
  • Letter |

    Cooperative quantum effects in superlattices of quantum dots made of caesium lead halide perovskite give rise to superfluorescence, with the individual emitters interacting coherently to give intense bursts of light.

    • Gabriele Rainò
    • , Michael A. Becker
    •  & Thilo Stöferle
  • Letter |

    All-inorganic perovskite nanocrystals containing caesium and lead provide low-cost, flexible and solution-processable scintillators that are highly sensitive to X-ray irradiation and emit radioluminescence that is colour-tunable across the visible spectrum.

    • Qiushui Chen
    • , Jing Wu
    •  & Xiaogang Liu
  • Letter |

    A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm.

    • T. F. Watson
    • , S. G. J. Philips
    •  & L. M. K. Vandersypen
  • Letter |

    The lowest-energy exciton state in caesium lead halide perovskite nanocrystals is shown to be a bright triplet state, contrary to expectations that lowest-energy excitons should always be dark.

    • Michael A. Becker
    • , Roman Vaxenburg
    •  & Alexander L. Efros
  • Letter |

    Zero-temperature quantum phase transitions and their associated quantum critical points are believed to underpin the exotic finite-temperature behaviours of many strongly correlated electronic systems, but identifying the microscopic origins of these transitions can be challenging and controversial; Keller et al. (see also the related paper by Iftikhar et al.) show how such behaviours can be engineered into nanoelectronic quantum dots, which permit both precise experimental control of the quantum critical behaviour and its exact theoretical characterization.

    • A. J. Keller
    • , L. Peeters
    •  & D. Goldhaber-Gordon
  • Letter |

    Zero-temperature quantum phase transitions and their associated quantum critical points are believed to underpin the exotic finite-temperature behaviours of many strongly correlated electronic systems, but identifying the microscopic origins of these transitions can be challenging and controversial; Iftikhar et al. (see also the related paper by Keller et al.) show how such behaviours can be engineered into nanoelectronic quantum dots, which permit both precise experimental control of the quantum critical behaviour and its exact theoretical characterization.

    • Z. Iftikhar
    • , S. Jezouin
    •  & F. Pierre
  • Letter |

    A high-fidelity two-qubit CNOT logic gate is presented, which is realized by combining single- and two-qubit operations with controlled phase operations in a quantum dot system using the exchange interaction.

    • M. Veldhorst
    • , C. H. Yang
    •  & A. S. Dzurak
  • Letter |

    Organohalide perovskites and preformed colloidal quantum dots are combined in the solution phase to produce epitaxially aligned ‘dots-in-a-matrix’ crystals that have both the excellent electrical transport properties of the perovskite matrix and the high radiative efficiency of the quantum dots.

    • Zhijun Ning
    • , Xiwen Gong
    •  & Edward H. Sargent
  • Letter |

    An efficient, cost effective microspectrometer that consists of a two-dimensional absorptive filter array of 195 different colloidal quantum dots is presented, and its performance demonstrated by measuring shifts in spectral peak positions as small as one nanometre.

    • Jie Bao
    •  & Moungi G. Bawendi
  • Letter |

    The insertion of an insulating layer into a multilayer light-emitting diode (LED) based on quantum dots and produced by depositing the layers from solution increases the performance of the LEDs to levels comparable to those of state-of-the-art organic LEDs produced by vacuum deposition, while retaining the advantages of solution processing.

    • Xingliang Dai
    • , Zhenxing Zhang
    •  & Xiaogang Peng
  • Letter |

    Single magnetic atoms on non-magnetic surfaces have magnetic moments that are usually destabilized within a microsecond, too speedily to be useful, but here the magnetic moments of single holmium atoms on a highly conductive metallic substrate can reach lifetimes of the order of minutes.

    • Toshio Miyamachi
    • , Tobias Schuh
    •  & Wulf Wulfhekel
  • News & Views |

    Entanglement between a photon and a stationary particle is a key resource for quantum communication. The effect has now been observed for a photon and a single electron spin in a semiconductor nanostructure. See Letters p.421 & p.426

    • Sophia E. Economou
  • Letter |

    Fast, single-photon detection enables the observation of entanglement between a stationary quantum bit (a single quantum dot spin) and a propagating quantum bit (a single photon), marking a first step towards the implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.

    • W. B. Gao
    • , P. Fallahi
    •  & A. Imamoglu
  • Letter |

    Exploiting the weak interactions between electron spins and nuclear spins in silicon-based quantum dots leads to a dephasing time two orders of magnitude greater than in analogous gallium-arsenide-based devices, demonstrating the potential of silicon as a host material for quantum information processing.

    • B. M. Maune
    • , M. G. Borselli
    •  & A. T. Hunter