Nanoscale devices articles within Nature Communications

Featured

  • Article
    | Open Access

    Colloidal quantum dots remain unexplored for applications in single-electron devices. Here, the authors demonstrate single-electron transistors using single PbS colloidal quantum dot, highlighting their room-temperature operation.

    • Kenji Shibata
    • , Masaki Yoshida
    •  & Yoshihiro Iwasa
  • Article
    | Open Access

    Body area networks represent a wearable technology suitable for applications like virtual reality and health monitoring. Here, the study presents a wireless battery-free channel that works reliably in harsh environments, including underwater. It utilizes stretchable magneto-inductive metamaterials to enable uninterrupted communication.

    • Amirhossein Hajiaghajani
    • , Patrick Rwei
    •  & Peter Tseng
  • Article
    | Open Access

    The authors study transport in Nb-(Pt/Cu)-Nb Josephson junctions (JJ), where Pt/Cu is a Rashba interface. Due to the Rashba–Edelstein effect, a charge current leads to a non-equilibrium spin moment at the Pt/Cu interface, which can be measured from a shift of the Fraunhofer pattern of the JJ.

    • Tapas Senapati
    • , Ashwin Kumar Karnad
    •  & Kartik Senapati
  • Article
    | Open Access

    Artificial sensory systems are typically limited by their performance and response to static and dynamic stimuli. Here, Bai et al. propose an iontronic slip-sensor, which responds to both static pressure and high-frequency vibrations up to 400 Hz, achieving high spatiotemporal resolution for texture recognition.

    • Ningning Bai
    • , Yiheng Xue
    •  & Chuan Fei Guo
  • Article
    | Open Access

    Two-dimensional magnets and superconductors are emerging as tunable building blocks for quantum computing and superconducting spintronic devices. Here, Jo et al. demonstrate NbSe2/CrSBr van der Waals superconducting spin valves that exhibit infinite magnetoresistance and nonreciprocal charge transport, arising from a unique metamagnetic transition in CrSBr.

    • Junhyeon Jo
    • , Yuan Peisen
    •  & Luis E. Hueso
  • Article
    | Open Access

    Probabilistic computing has recently emerged as a promising energy-based computing system for solving non-deterministic polynomial-time-hard (NP-hard) problems. Here the authors develop a novel pbit unit, using NbOx volatile memristor, in which a self-clocking oscillator harnesses noise-induced metal-insulator transition, enabling high-performance probabilistic computing.

    • Hakseung Rhee
    • , Gwangmin Kim
    •  & Kyung Min Kim
  • Article
    | Open Access

    Designing efficient 3D artificial neural networks chip remains a challenge. Here, the authors report a M3D-LIME chip with monolithic three-dimensional integration of hybrid memory architecture based on resistive random-access memory, which achieves a high classification accuracy of 96% in one-shot learning task while exhibiting 18.3× higher energy efficiency than GPU.

    • Yijun Li
    • , Jianshi Tang
    •  & Huaqiang Wu
  • Article
    | Open Access

    Designing efficient neuromorphic systems based on nanowire networks remains a challenge. Here, Zhu et al. demonstrate brain-inspired learning and memory of spatiotemporal features using nanowire networks capable of MNIST handwritten digit classification and a novel sequence memory task performed in an online manner.

    • Ruomin Zhu
    • , Sam Lilak
    •  & Zdenka Kuncic
  • Article
    | Open Access

    Designing a high-density memory array to effectively manage large data volumes remains a challenge. Here, the authors introduce a stacked ferroelectric memory array comprised of laterally gated ferroelectric field-effect transistors device with high vertical scalability and efficient memory properties, making it suitable for 3D in-memory computing structures.

    • Sangyong Park
    • , Dongyoung Lee
    •  & Jin-Hong Park
  • Article
    | Open Access

    The authors present a comprehensive framework for on-demand dispersion control with a single-layer metasurface, particularly in an ultra-broad bandwidth. An achromatic metalens spanning the visible and near-infrared spectra is experimentally demonstrated.

    • Yueqiang Hu
    • , Yuting Jiang
    •  & Huigao Duan
  • Article
    | Open Access

    Tunneling spectroscopy is widely used to examine the subgap spectra in semiconductor/superconductor nanostructures. Here, the authors develop an alternative type of tunnel probe for InSb-Al hybrid nanowires, enabling study of the spatial extension of Andreev bound states.

    • Vukan Levajac
    • , Ji-Yin Wang
    •  & Leo P. Kouwenhoven
  • Article
    | Open Access

    Phosphor efficiency can be improved via materials development or structural engineering, the latter only begun lately. Here the authors propose and investigate simple vertical resonant cavity as a platform for nanostructurally engineered phosphor.

    • Tae-Yun Lee
    • , Yeonsang Park
    •  & Heonsu Jeon
  • Article
    | Open Access

    Here, the Authors demonstrate a 2D isotropic, polarization-independent, broadband edge detection with high transmission efficiency under both coherent and incoherent illumination along the visible range using a metasurface based on Fourier optics principles.

    • Ibrahim Tanriover
    • , Sina Abedini Dereshgi
    •  & Koray Aydin
  • Article
    | Open Access

    Integrating coherent light sources on surface wave platforms would offer opportunities for sensing and data processing. The authors realize a microfabricated coherent light source based on the stimulated emission of a guided Bloch surface wave mode.

    • Yang-Chun Lee
    • , Ya-Lun Ho
    •  & Jean-Jacques Delaunay
  • Comment
    | Open Access

    2D semiconductors have been proposed as a potential option to replace or complement silicon electronics at the nanoscale. Here, the authors discuss the recent progress and remaining challenges that need to be addressed by the academic and industrial research communities towards the commercialization of 2D transistors.

    • Kevin P. O’Brien
    • , Carl H. Naylor
    •  & Uygar Avci
  • Article
    | Open Access

    Schrodinger’s cat states constitute an important resource for quantum information processing, but present challenges in terms of scalabilty and controllability. Here, the authors exploit fast Kerr nonlinearity modulation to generate and store cat states in superconducting circuits in a more scalable way.

    • X. L. He
    • , Yong Lu
    •  & Z. R. Lin
  • Article
    | Open Access

    Dendritic computing is a promising approach to enhance the processing capability of artificial neural networks. Here, the authors report the development of a neurotransistor based on a vertical dual-gate electrolyte-gated transistor with short-term memory characteristics, a 30 nm channel length, a low read power of ~3.16 fW and read energy of ~30 fJ for dendritic computing.

    • Han Xu
    • , Dashan Shang
    •  & Ming Liu
  • Article
    | Open Access

    Arranging nanomagnets into a two-dimensional lattice provides access to a rich landscape of magnetic behaviours. Control of the interactions between the nanomagnets after fabrication is a challenge. Here, Yun et al demonstrate all-electrical control of magnetic couplings in a two-dimensional array of nanomagnets using ionic gating.

    • Chao Yun
    • , Zhongyu Liang
    •  & Zhaochu Luo
  • Article
    | Open Access

    Designing efficient in-memory-computing architectures remains a challenge. Here the authors develop a multi-level FeFET crossbar for multi-bit MAC operations encoded in activation time and accumulated current with experimental validation at 28nm achieving 96.6% accuracy and high performance of 885 TOPS/W.

    • Taha Soliman
    • , Swetaki Chatterjee
    •  & Hussam Amrouch
  • Article
    | Open Access

    Nanodiamonds containing NV centers are promising electron paramagnetic resonance sensors, however applications are hindered by their random orientation. Qin et al. propose a new protocol that makes the technique insensitive to the sensor’s orientation and present a proof-of-principle in situ demonstration.

    • Zhuoyang Qin
    • , Zhecheng Wang
    •  & Jiangfeng Du
  • Article
    | Open Access

    Memory devices with open-loop analog programmability are highly desired in training tasks. Here, the authors developed an electrochemical memory array that can be accurately programmed without any feedback, offering unique capabilities for training.

    • Peng Chen
    • , Fenghao Liu
    •  & Gang Pan
  • Article
    | Open Access

    Designing efficient AI hardware capable of creating artificial general intelligence remains a challenge. Here, the authors present an approach for the on-demand generation of complex networks within a single memristor by harnessing device dynamics with intrinsic cycle-to-cycle variability and demonstrate the effectiveness of memristive complex network-based reservoirs.

    • Yunpeng Guo
    • , Wenrui Duan
    •  & Huanglong Li
  • Article
    | Open Access

    Hardware architectures based on self-organized memristive networks of nano objects have attracted a growing attention. Here, nanowire connectomes are experimentally proved to translate spatially correlated short-term plasticity effects into long-lasting topological changes, thus emulating both information encoding and memory consolidation of human brain.

    • Gianluca Milano
    • , Alessandro Cultrera
    •  & Carlo Ricciardi
  • Article
    | Open Access

    Capillary breakup in multimaterial fibers is explored for the self-assembly of optoelectronic systems. However, its insights primarily stem from numerical simulations, qualitative at best. The authors formulate an analytical model of such breakup, obtaining a window in the governing parameters where the generally chaotic breakup becomes predictable and thus engineerable.

    • Camila Faccini de Lima
    • , Fan Wang
    •  & Alexander Gumennik
  • Article
    | Open Access

    Spin defects in semiconductors are promising for quantum technologies but understanding of defect formation processes in experiment remains incomplete. Here the authors present a computational protocol to study the formation of spin defects at the atomic scale and apply it to the divacancy defect in SiC.

    • Cunzhi Zhang
    • , Francois Gygi
    •  & Giulia Galli
  • Article
    | Open Access

    Designing a monolithic 3D structure with interleaved logic and high-density memory layers has been difficult to achieve due to challenges in managing the thermal budget. Here, the authors demonstrate a 3D integration of monolayer MoS2 transistors with 3D vertical RRAMs through a low-temperature fabrication process whose 1T–nR structure shows high promise for low-power and high-density memory applications.

    • Maosong Xie
    • , Yueyang Jia
    •  & Rui Yang
  • Article
    | Open Access

    To date the performance of molecular electronics compared to silicon limits their applications. Yang et al. develop the first mechano-optoelectronic switch based on mechanically controlled aggregation-induced emission of the self-assembled molecules, which can be reversibly switched at high speed.

    • Zhenyu Yang
    • , Pierre-André Cazade
    •  & Yuan Li
  • Article
    | Open Access

    The speed-retention-endurance trade-off usually limits the performance of flash memory devices. Here, the authors report the realization of van der Waals flash memory cells based on 2H-MoS2 semiconducting channels with phase-engineered 1T-LixMoS2 edge contacts, showing program/erasing speed of ~10/100 ns, endurance of >106 cycles and expected retention lifetime of >10 years.

    • Jun Yu
    • , Han Wang
    •  & Tianyou Zhai
  • Article
    | Open Access

    By carefully inducing twists or lattice stacking offsets between two adjacent van der Waals crystals, a superlattice potential can be introduced. This Moire lattice offers an incredibly rich physics, ranging from superconductivity to exotic magnetism, depending on van der Waals materials in question. Here, Du et al. study the magnetic domains in twisted CrI3, and show that despite this domain structure, spin fluctuations are spatially homogenous.

    • Mengqi Huang
    • , Zeliang Sun
    •  & Chunhui Rita Du
  • Article
    | Open Access

    Chirality induced spin selectivity is a process whereby a chiral molecule induces a spin-polarization to a current passing along the chiral molecule. The exact physical origin of the effect is still debated despite extensive experimental result. Here, Adhikari et al provide evidence for the important role of spin-orbit coupling in the normal metals that connect to the chiral molecule in CISS experiments.

    • Yuwaraj Adhikari
    • , Tianhan Liu
    •  & Peng Xiong
  • Perspective
    | Open Access

    Learning from human brains to build powerful computers is attractive, yet extremely challenging due to the lack of a guiding computing theory. Jaeger et al. give a perspective on a bottom-up approach to engineer unconventional computing systems, which is fundamentally different to the classical theory based on Turing machines.

    • Herbert Jaeger
    • , Beatriz Noheda
    •  & Wilfred G. van der Wiel
  • Article
    | Open Access

    Dense random access memory is required for building future generations of superconducting computers. Here the authors study vortex-based memory cells, demonstrate their scalability to submicron sizes and robust word and bit-line operation at zero magnetic field.

    • Taras Golod
    • , Lise Morlet-Decarnin
    •  & Vladimir M. Krasnov
  • Article
    | Open Access

    By coupling two quantum dots via a superconductor-semiconductor hybrid region in a 2D electron gas, the authors achieve efficient splitting of Cooper pairs. Further, by applying a magnetic field perpendicular to the spin-orbit field, they can induce and measure large triplet correlations in the Cooper pair splitting process.

    • Qingzhen Wang
    • , Sebastiaan L. D. ten Haaf
    •  & Srijit Goswami
  • Article
    | Open Access

    Manipulation of nano-sized extracellular vesicles are of significant interest for disease detection, monitoring, and therapeutics, yet it is still challenging to expedite the process. Here, the authors presented geometry-induced electrohydrodynamic tweezers, which enable fast parallel transport and trapping of single vesicle within seconds.

    • Chuchuan Hong
    •  & Justus C. Ndukaife