Infrared spectroscopy articles within Nature Communications

Featured

  • Article
    | Open Access

    Using femtosecond time-resolved heterodyne-detected vibrational sum-frequency generation spectroscopy the authors determine the vibrational relaxation (T1) time of the O-H stretch at the air/water interface by observing the decay of excited-state OH signals, providing a comprehensive picture of the interfacial vibrational relaxation process of water.

    • Woongmo Sung
    • , Ken-ichi Inoue
    •  & Tahei Tahara
  • Article
    | Open Access

    The researchers showcase all-crystalline and hybrid mid-infrared supermirrors with the lowest optical losses ever demonstrated in this wavelength range, representing an unprecedented improvement over any existing mirrors made with any production technology.

    • Gar-Wing Truong
    • , Lukas W. Perner
    •  & Garrett D. Cole
  • Article
    | Open Access

    Recent experiments have shown the formation of ferroelectric domains in twisted van der Waals bilayers. Here, the authors report near-field infrared nano-imaging and nano-photocurrent measurements to investigate ferroelectricity in minimally twisted WSe2 by visualizing the plasmonic and photo-thermoelectric response of an adjacent graphene monolayer.

    • Shuai Zhang
    • , Yang Liu
    •  & D. N. Basov
  • Article
    | Open Access

    Chemical imaging, including infrared spectroscopic microscopy with molecular sensitivity, is useful for label-free biomedical analyses, but is limited by slow speed and poor image quality. Here, the authors design a fast mid-infrared microscope with low noise and high spatial resolution for high-throughput imaging of whole slides.

    • Kevin Yeh
    • , Ishaan Sharma
    •  & Rohit Bhargava
  • Article
    | Open Access

    Spectroscopic gas sensing with high sensitivity and selectivity finds an increasing number of applications. Here, the authors report an approach to ultrasensitive multiplexed gas sensing by integrating dual-comb spectroscopy with cavity optomechanics.

    • Xinyi Ren
    • , Jin Pan
    •  & Heping Zeng
  • Article
    | Open Access

    Nanoresonator is proven to be an excellent platform for molecular detection, yet a set of them is necessary to identify a molecule fingerprint. Here, the authors utilise low quality resonators with large radiative losses, despite its lower quality factor, to identify molecular absorption spectrum between 5 and 10 μm.

    • Laura Paggi
    • , Alice Fabas
    •  & Patrick Bouchon
  • Article
    | Open Access

    The authors present a fast mid-infrared hyperspectral chemical imaging technique that uses chirped pulse upconversion of sub-cycle pulses at the image plane, with lateral resolution of 15 µm and an adjustable field of view and large spectral range. They demonstrate identification and mapping different components in a microfluidic device, plant cell, and mouse embryo.

    • Yue Zhao
    • , Shota Kusama
    •  & Takao Fuji
  • Article
    | Open Access

    Direct spectroscopic probes of the impact of structure on dynamical processes in liquids remain scarce. Here, the authors use molecular dynamics simulations to show that the correlation between vibrational coupling and the local tetrahedral structure of liquid water can be studied via hybrid terahertz- and infrared-Raman spectroscopy.

    • Tomislav Begušić
    •  & Geoffrey A. Blake
  • Article
    | Open Access

    Intercalation of protons in 2D materials plays a major role for several applications in energy storage and conversion. Here, the authors show that protons intercalated in Ti3C2Tx MXene interlayer during electrochemical cycling have a different hydration structure than protons in bulk water.

    • Mailis Lounasvuori
    • , Yangyunli Sun
    •  & Tristan Petit
  • Article
    | Open Access

    The authors introduce and demonstrate cross-comb spectroscopy in the mid-infrared as a variant of dual-comb spectroscopy. It provides enhanced performance and allows mid-infrared spectral information to be obtained by near-infrared detection.

    • Mingchen Liu
    • , Robert M. Gray
    •  & Alireza Marandi
  • Article
    | Open Access

    The authors investigate whether strong light-matter coupling can alter the nonlinear optical response of molecules inside a microcavity. Focusing on electroabsorption as a model third order nonlinearity, they find that apparent discrepancies between experiment and classical transfer matrix modeling arise from dark states in the system and are not a sign of new physics in the strong coupling regime.

    • Chiao-Yu Cheng
    • , Nina Krainova
    •  & Noel C. Giebink
  • Article
    | Open Access

    The authors introduce Bond-selective Intensity Diffraction Tomography, a computational mid-infrared photothermal microscopy technique based on a standard bright-field microscope and an add-on pulsed light source. It recovers both mid-infrared spectra and bond-selective 3D refractive index maps based on intensity-only measurements.

    • Jian Zhao
    • , Alex Matlock
    •  & Ji-Xin Cheng
  • Article
    | Open Access

    The Zundel [H(H2O)2]+ and Eigen [H(H2O)4]+ cations exhibit radicallly different infrared spectra and are the limiting dynamical structures involved in proton mobility in liquid water. Here, the authors find through quantum dynamics simulations that two polarized water molecules and a proton suffice to explain the key spectroscopic features connected to proton mobility for both species.

    • Markus Schröder
    • , Fabien Gatti
    •  & Oriol Vendrell
  • Article
    | Open Access

    Energy transfer between the electromagnetic field and atoms or molecules is fundamentally interesting. Here the authors demonstrate stepwise energy transfer between broadband mid-infrared optical pulses and vibrating methylsulfonylmethane molecules in aqueous solution.

    • Martin T. Peschel
    • , Maximilian Högner
    •  & Ioachim Pupeza
  • Article
    | Open Access

    A molecular-level understanding of the Au-catalyzed CO oxidation on a fast time-resolved scale is still lacking. Here the authors monitor the rapid dynamic changes during CO oxidation over Au/TiO2 using in situ DRIFTS and UV-Vis spectroscopy, and reveal that the catalyst undergoes a surprising structural change at the beginning of the reaction.

    • Xianwei Wang
    • , Arnulf Rosspeintner
    •  & Thomas Bürgi
  • Article
    | Open Access

    Rapid investigation of chemical reactions is a challenge in bio-medical analysis. Here, the authors demonstrate sensitive in-situ real-time reaction-monitoring of conformational changes in protein solution, based on a fingertip-sized mid-IR lab-on-a-chip.

    • Borislav Hinkov
    • , Florian Pilat
    •  & Gottfried Strasser
  • Article
    | Open Access

    Infrared spectroscopy with plasmonic nanoantennas is limited by small overlap between molecules and hot spots, and sharp resonance peaks. The authors demonstrate spectral multiplexing of hook nanoantennas with gradient dimensions as ultrasensitive vibrational probes in a continuous ultra-broadband region and utilize machine learning for enhanced sensing performance.

    • Zhihao Ren
    • , Zixuan Zhang
    •  & Chengkuo Lee
  • Article
    | Open Access

    Knowing the age of malaria-transmitting mosquitoes is important to understand transmission risk as only old mosquitoes can transmit the disease. Here, the authors develop a method based on mid-infrared spectra of mosquito cuticle that can rapidly identify the species and age class of main malaria vectors.

    • Doreen J. Siria
    • , Roger Sanou
    •  & Francesco Baldini
  • Article
    | Open Access

    Ultrafast infrared nano-imaging has enabled the study of nanoscale dynamics, but has been limited to probing short-lived carrier lifetimes. Here, the authors present pump-probe nano-spectroscopy with enhanced sensitivity to image both carrier and vibrational dynamics associated with long-lived excitations.

    • Jun Nishida
    • , Samuel C. Johnson
    •  & Markus B. Raschke
  • Article
    | Open Access

    Photothermal microscopy is limited for imaging of thermal dynamics. Here, the authors introduce a lock-in free, mid-infrared photothermal dynamic imaging system, which significantly increases SNR and imaging speed, and demonstrate metabolism analysis at single-cell level and background removal.

    • Jiaze Yin
    • , Lu Lan
    •  & Ji-Xin Cheng
  • Article
    | Open Access

    Vibrational energy transfer (VET) is essential for protein function as it is responsible for efficient energy dissipation in reaction sites and is linked to pathways of allosteric communication. Here authors equipped a tryptophan zipper with a VET injector and a VET sensor for femtosecond pump probe experiments to map the VET.

    • Erhan Deniz
    • , Luis Valiño-Borau
    •  & Jens Bredenbeck
  • Article
    | Open Access

    Photosystem II subunit S (PsbS) senses thylakoid lumen acidification when plants are exposed to excess light. Here the authors use NMR and IR spectroscopy to show that low pH causes repositioning of an amphipathic helix and folding of a loop involving critical pH sensing glutamate residues in PsbS.

    • Maithili Krishnan-Schmieden
    • , Patrick E. Konold
    •  & Anjali Pandit
  • Article
    | Open Access

    Health status transitions are reflected as characteristic changes in molecular composition of biofluids. Here, the authors apply infrared molecular fingerprinting and reveal that blood-based phenotypes are sufficiently stable over time, providing the basis for time- and cost-effective health monitoring.

    • Marinus Huber
    • , Kosmas V. Kepesidis
    •  & Mihaela Žigman
  • Article
    | Open Access

    Glycolipids are glycoconjugates with important biological functions, but techniques for their analysis are deficient. Here, the authors report the use of cryogenic gas-phase infrared spectroscopy to investigate isomerism in a set of immunologically relevant glycolipids, and show that their structural features can be accurately resolved based on a narrow spectral fingerprint region.

    • Carla Kirschbaum
    • , Kim Greis
    •  & Kevin Pagel
  • Article
    | Open Access

    Quantized circular photogalvanic effect (CPGE) is predicted in chiral topological semimetals, but the experimental observation remains challenging. Here, Ni et al. observe a large topological longitudinal photocurrent in CoSi, which is much larger than the photocurrent in any other chiral crystals, indicating quantized CPGE within reach upon doping and increase of the hot-carrier lifetime.

    • Zhuoliang Ni
    • , K. Wang
    •  & Liang Wu
  • Article
    | Open Access

    Existing high-dimensional optical imaging techniques that record space and polarization cannot detect the photon’s time of arrival due to the limited speeds of electronic sensors. Here, the authors develop a single-shot ultrafast imaging modality to record light-speed high-dimensional events with picosecond resolution.

    • Mohammad A. Almajhadi
    • , Syed Mohammad Ashab Uddin
    •  & H. Kumar Wickramasinghe
  • Article
    | Open Access

    Eumelanin protects cells from sun damage and is promising for energy conversion applications, but its structure and excited state dynamics are elusive. Here the authors shed light on both aspects combining selective excitation of UV- and visible-absorbing chromophores with time-resolved infrared spectroscopy.

    • Christopher Grieco
    • , Forrest R. Kohl
    •  & Bern Kohler
  • Article
    | Open Access

    Nano-FTIR spectroscopy allows chemical characterization of composite surfaces, but its capability in subsurface analysis is not much explored. The authors show that spectra from thin surface layers differ from those of subsurface layers of the same organic material, and establish a method for distinguishing them in experiments.

    • Lars Mester
    • , Alexander A. Govyadinov
    •  & Rainer Hillenbrand
  • Article
    | Open Access

    Atomic force microscopy-infrared (AFM-IR) spectroscopic imaging techniques offer a non-perturbative, molecular contrast for characterization of nanomaterials; however, data are often complicated by the measurement apparatus, sample preparation conditions and low signal-to-noise ratio. Here, the authors demonstrate a closed-loop controlled AFM-IR instrument design to address measurement artifacts and reduce noise up to 5x compared to previous methods.

    • Seth Kenkel
    • , Shachi Mittal
    •  & Rohit Bhargava
  • Article
    | Open Access

    While infrared nanospectroscopy methods based on thermomechanical detection (AFM-IR) enables the acquisition of absorption spectra at the nanoscale, single molecule detection has not been possible so far. Here, the authors present off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR), which allows measuring infrared absorption spectra at the single molecule level in a time scale of seconds with high throughput and demonstrate that the secondary structure of single protein molecules can be determined with this method.

    • Francesco Simone Ruggeri
    • , Benedetta Mannini
    •  & Tuomas P. J. Knowles
  • Article
    | Open Access

    Compact spectrometers can be useful in many applications and many sophisticated architectures have been proposed. In this work, the authors show that with an evaporating droplet on a fiber tip, spectrometry can be robustly and accurately performed with a simple and passive microfluidic system.

    • P. Malara
    • , A. Giorgini
    •  & G. Gagliardi
  • Article
    | Open Access

    Precision-spectroscopy techniques can accurately measure lines in constrained frequency and intensity ranges. The authors propose a spectroscopic-network-assisted precision spectroscopy method by which transitions measured in a narrow range provide information in other, extended regions of the spectrum.

    • Roland Tóbiás
    • , Tibor Furtenbacher
    •  & Wim Ubachs
  • Article
    | Open Access

    Polycyclic aromatic hydrocarbons (PAHs) are present in the interstellar medium but their origin is unclear. Here the authors investigate large PAH formation from smaller PAHs in a plasma jet by mass-selective IR and UV laser spectroscopy, uncovering diacetylene radical addition as formation mechanism.

    • Alexander K. Lemmens
    • , Daniël B. Rap
    •  & Anouk M. Rijs
  • Article
    | Open Access

    While main group elements possess four valence orbitals that are accessible for bonding, quadruple bonding to main group elements is very rarely observed. Here the authors report that boron is able to form four bonding interactions with iron in the BFe(CO)3- anion complex.

    • Chaoxian Chi
    • , Jia-Qi Wang
    •  & Jun Li
  • Article
    | Open Access

    Generally infrared and Raman spectroscopic methods are needed to study the symmetric and asymmetric molecular vibrational modes. Here the authors demonstrate complementary vibrational spectroscopy to organic molecules by simultaneously measuring their symmetric and anti-symmetric vibrations with one setup.

    • Kazuki Hashimoto
    • , Venkata Ramaiah Badarla
    •  & Takuro Ideguchi
  • Article
    | Open Access

    It has been challenging to probe whether dynamically disordered organic cations affect optical properties of CH3NH3PbI3. Here, Guo et al. employ infrared-pump electronic-probe spectroscopy and show that pump-induced atomic motions of the organic cations do not substantially alter optoelectronic properties.

    • Peijun Guo
    • , Arun Mannodi-Kanakkithodi
    •  & Richard D. Schaller
  • Article
    | Open Access

    Glycosyl cations are key intermediates in glycosylation reactions, but their structure has remained elusive due to their transient nature. Here, the authors perform an in-depth structural analysis and report that C2-participating protective groups induce acetoxonium cations with distinct ring conformations.

    • Eike Mucha
    • , Mateusz Marianski
    •  & Kevin Pagel
  • Article
    | Open Access

    Alumina is thought to be the main condensate to form in the gas outflow from oxygen-rich evolved stars. Here, the authors perform a condensation experiment with alumina in a low-gravity environment, and find spectroscopic evidence for a sharp feature at a wavelength of 13.55 μm.

    • Shinnosuke Ishizuka
    • , Yuki Kimura
    •  & Yuko Inatomi
  • Article
    | Open Access

    Large peatlands exist at high latitudes because flooded conditions and cold temperatures slow decomposition, so the presence of (sub)tropical peat is enigmatic. Here the authors show that low-latitude peat is preserved due to lower carbohydrate and greater aromatic content resulting in chemical recalcitrance.

    • Suzanne B. Hodgkins
    • , Curtis J. Richardson
    •  & Jeffrey P. Chanton