Applied optics articles within Nature Communications

Featured

  • Article |

    Photodetection is believed to be among the most promising potential applications for graphene. Here, by combining graphene with plasmonic nanostructures, the efficiency of graphene-based photodetectors is increased by up to two orders of magnitude.

    • T.J. Echtermeyer
    • , L. Britnell
    •  & K.S. Novoselov
  • Article
    | Open Access

    Various methods have been investigated to locally control atmospheric precipitation. In this study, field experiments show that laser-induced condensation is initiated when the relative humidity exceeds 70%, and that this effect is largely a result of photochemical HNO3formation.

    • S. Henin
    • , Y. Petit
    •  & J.-P. Wolf
  • Article |

    The development of practical photonic quantum technologies will be aided by the spatial control of entangled photons. Lenget al. achieve on-chip spatial control of entangled photons by using domain engineering, rather than by using external optical elements.

    • H.Y. Leng
    • , X.Q. Yu
    •  & S.N. Zhu
  • Article |

    Brillouin interactions between sound and light can excite mechanical resonances in photonic microsystems, with potential for sensing and frequency reference applications. The authors demonstrate experimental excitation of mechanical resonances ranging from 49 to 1,400 MHz using forward Brillouin scattering.

    • Gaurav Bahl
    • , John Zehnpfennig
    •  & Tal Carmon
  • Article
    | Open Access

    Optical computing, involving on-chip integrated logic units, could provide improved performance over semiconductor-based computing. Here, a binary NOR gate is developed from cascaded OR and NOT gates in four-terminal plasmonic nanowire networks; the work could lead to new optical computing technologies.

    • Hong Wei
    • , Zhuoxian Wang
    •  & Hongxing Xu
  • Article
    | Open Access

    Two-qubit operation is an essential part of quantum computation, but implementation has been difficult. Gotoet al.introduce optically controllable internuclear coupling in semiconductors providing a simple way of switching inter-qubit couplings in semiconductor-based quantum computers.

    • Atsushi Goto
    • , Shinobu Ohki
    •  & Tadashi Shimizu
  • Article |

    Waveplates are used in optoelectronics to alter the polarization of light, but they do not typically perform achromatically, which is important for applications such as three-dimensional displays. Here, biologically inspired periodically multilayered structures are produced, which function as achromatic visible-light waveplates.

    • Yi-Jun Jen
    • , Akhlesh Lakhtakia
    •  & Jyun-Rong Lai
  • Article |

    Metal-based nanostructures offer a solution to scale down photonics to the nanoscale. Sorgeret al. directly demonstrate waveguiding of ultra-small propagating waves at visible and near-infrared frequencies using NSOM imaging, with the potential for nanoscale photonic applications such as bio-sensing.

    • Volker J. Sorger
    • , Ziliang Ye
    •  & Xiang Zhang
  • Article |

    Nanometallic optical antennas can concentrate light into a deep-subwavelength volume for sensor and photovoltaic applications. Junet al. demonstrate an optical antenna design that achieves a high level of control over fluorescent emission for a wide range of nanoscale optical spectroscopy applications.

    • Young Chul Jun
    • , Kevin C.Y. Huang
    •  & Mark L. Brongersma
  • Article |

    Infrared cameras are used for night vision and in medical diagnostics, but currently only present monochrome images. Krishnaet al. demonstrate a monolithically intergrated plasmonic infrared quantum dot camera as a step towards coloured infrared imaging.

    • Sang Jun Lee
    • , Zahyun Ku
    •  & Sam Kyu Noh
  • Article |

    Bismuth ferrite has photoelectric properties that make it an attractive alternative for use in photovoltaic devices. Here, using photoelectric atomic force microscopy, the authors show that photogenerated carriers can be collected by the tip and suggest that this can be used in photoelectric applications.

    • Marin Alexe
    •  & Dietrich Hesse
  • Article
    | Open Access

    Multimode interference devices could allow the implementation of multiport circuits for quantum technologies. Here, quantum interference is demonstrated in 2×2 and 4×4 multimode interference devices, and a technique is reported to characterize such devices.

    • Alberto Peruzzo
    • , Anthony Laing
    •  & Jeremy L. O'Brien
  • Article
    | Open Access

    Until now, invisibility cloaks have only covered a region of a few wavelengths because of their nanostructured materials. Chenet al.describe a macroscopic cloak, made of calcite birefringent crystals, which works for a specific polarization at visible wavelengths.

    • Xianzhong Chen
    • , Yu Luo
    •  & Shuang Zhang