Reviews & Analysis

Filter By:

Year
  • Molecular daisy-chain structures are typically made up of two interlocked components and can exhibit muscle-like contraction and extension in one dimension. Zinc-based multicomponent systems that can operate in two and three dimensions have now been designed and synthesized.

    • Karine Fournel-Marotte
    • Frédéric Coutrot
    News & Views
  • The design and prediction of network topology is challenging, even when the components' principle interactions are strong. Now, frameworks with relatively weak 'chiral recognition' between organic building blocks have been synthesized and rationalized in silico — an important development in the reticular synthesis of molecular crystals.

    • Caroline Mellot-Draznieks
    • Anthony K. Cheetham
    News & Views
  • Nature oxidizes biosynthetic intermediates into structurally and functionally diverse peptides. An iron-catalysed C–H oxidation mimics this approach in the lab, enabling chemists to synthesize structural analogues with ease.

    • Sean Bartlett
    • David R. Spring
    News & Views
  • Although metal–organic frameworks are often seen as rigid crystalline structures, there is growing evidence that large-scale flexibility, the presence of defects, and long-range disorder are not the exception, but rather the norm. Here we propose that these concepts are inescapably intertwined, and the interfaces between them offer prospects for enhancement of materials' functionalities.

    • Thomas D. Bennett
    • Anthony K. Cheetham
    • François-Xavier Coudert
    Perspective
  • Three different methods that use a single ruthenium catalyst to enable the facile formation of meta- and para-substituted alkenylarenes have now been developed. The reactions proceed through a tandem alkenylation/decarboxylation process and provide several advantages over alternative approaches.

    • Marco Simonetti
    • Igor Larrosa
    News & Views
  • Despite their potential as drugs, peptides are generally not cell permeable, which limits their practical applications in medicine. Now, linear peptides have been cyclized by using a heteroaromatic linker. This cyclization both improves passive membrane permeability and stabilizes a biologically relevant secondary structure.

    • Fumito Saito
    • Jeffrey W. Bode
    News & Views
  • The targeted release of bioactive molecules to diseased tissues has the potential to improve therapeutic efficacy, but not all drugs contain a free functional group that can be easily attached to an antibody. Now, a linker technology has been developed to enable the traceless release of tertiary and heteroaryl amine-containing drugs.

    • Tiago Rodrigues
    • Gonçalo J. L. Bernardes
    News & Views
  • No longer a theoretical dream, this Perspective describes effects of oriented external electric fields on rates and selectivity patterns of nonpolar reactions. Discussions of the Diels–Alder reaction, C–H and C=C bond activations and so on, underscore the potential usage of oriented electric fields as future smart catalysts, inhibitors and reagents in chemistry.

    • Sason Shaik
    • Debasish Mandal
    • Rajeev Ramanan
    Perspective
  • Charge transfer through DNA has been well studied over recent decades from both a biological and electronics perspective. It has now been shown that charge transfer can be accelerated one hundredfold by using highly energetic 'hot holes', revealing a new mechanism that could help to create useful electronic biomaterials.

    • D. N. Beratan
    • D. H. Waldeck
    News & Views
  • Due to its high reactivity, vinylidene — the sole 'electron-precise' isomer of acetylene — is only known to exist in the gas phase. Now, a stable base-free digermanium version of a vinylidene has been isolated by the clever use of suitable substituents.

    • David Scheschkewitz
    News & Views
  • Biological drugs can offer high potency and selectivity; however, this class of therapeutics often shows poor stability upon oral administration and during subsequent circulation. This Review highlights the materials and methods used to deliver biological drugs, and discusses how these approaches can improve their pharmacokinetics.

    • Alexander N. Zelikin
    • Carsten Ehrhardt
    • Anne Marie Healy
    Review Article
  • The high stability of aromatic compounds often limits the types of reaction that can be conducted on them. Now, a series of photochemically promoted addition reactions has been used to effect the oxidative dearomatization of benzene derivatives. These reactions provide a suite of versatile new building blocks for chemical synthesis.

    • Martin G. Banwell
    News & Views
  • 'Click' chemistry allows for the linking together of chemical modules, however, there are currently no methods that also allow for facile 'declicking' to unlink them. Now, a method has been developed to click together amines and thiols, and then allow a chemically triggered declick reaction to release the original molecular components.

    • David A. Fulton
    News & Views
  • The high temperatures and pressures used in heterogeneous catalysis make it difficult to observe catalysts using conventional techniques. Now, adsorbed product molecules on the surface of a single-crystal model catalyst have been observed during catalysis using a custom-built scanning tunnelling microscope that can work in situ.

    • Franklin (Feng) Tao
    • Yu Tang
    News & Views
  • After remaining elusive for 40 years, 'Kochi's complex', a key intermediate in iron-catalysed cross-coupling, has finally been pinned down, and its structure comes as something of a surprise.

    • Robin B. Bedford
    News & Views