Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Oriented electric fields as future smart reagents in chemistry

Abstract

Oriented external electric fields (OEEFs) as 'smart reagents' are no longer a theoretical dream. Here, we discuss the wide-ranging potential of using OEEFs to catalyse and control a variety of non-redox reactions and impart selectivity at will. An OEEF along the direction of electron reorganization (the so-called reaction axis) will catalyse nonpolar reactions by orders of magnitude, control regioselectivity and induce spin-state selectivity. Simply flipping the direction of the OEEF or orienting it off of the reaction axis, will control at will the endo/exo ratio in Diels–Alder reactions and steps in enzymatic cycles. This Perspective highlights these outcomes using theoretical results for hydrogen abstraction reactions, epoxidation of double bonds, C–C bond forming reactions, proton transfers and the cycle of the enzyme cytochrome P450, as well as recent experimental data. We postulate that, as experimental techniques mature, chemical syntheses may become an exercise in zapping oriented molecules with OEEFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MO and VB analyses of the manner by which an OEEF, oriented along the bond axis, generates charge distributions and dipole moments in two homonuclear bonds, H–H and Li–Li.
Figure 2: A z-oriented OEEF affects the bond activation reactions of propene, mediated by an iron-oxo Por radical cation model species (CpdI) of the enzyme cytochrome P450.
Figure 3: A z-oriented OEEF causes selective bond activations of propene by Cpd I, such that either C–H hydroxylation or C=C epoxidation can be produced at will.
Figure 4: A negatively oriented z-OEEF drastically lowers the C–H hydroxylation barriers in the reactions between the two spin states of an iron-oxo complex (TMC(SR)FeO+) and cyclohexane, and creates product- and spin-state selectivities in the quintet state's hydroxylation process.
Figure 5: VB diagrams showing the construction of the energy profiles (brown) for a Diels–Alder reaction between generic diene and dienophile, and leading to predictions of z-OEEF effects on catalysis/inhibition and mechanistic crossover in the reactions.
Figure 6: Computational results showing that OEEFs induce catalysis, inhibition, and endo/exo selectivity in the reaction of cyclopentadiene and maleic anhydride.
Figure 7: The single-molecule experiment1 showing catalysis of a Diels–Alder reaction by an OEEF, created by a bias voltage between the STM tip and the electrode.

Similar content being viewed by others

References

  1. Aragonés, C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Meir, R., Chen, H., Lai, W. & Shaik, S. Oriented electric fields accelerate Diels–Alder reactions and control the endo/exo selectivity. ChemPhysChem 11, 301–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Shaik, S., de Visser, S. P. & Kumar, D. External electric field will control the selectivity of enzymatic-like bond activations. J. Am. Chem. Soc. 126, 11746–11749 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Hirao, H., Chen, H., Carvajal, M. A., Wang, Y. & Shaik, S. Effect of external electric fields on the C−H Bond activation reactivity of nonheme iron−oxo reagents. J. Am. Chem. Soc. 130, 3319–3327 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Lai, W., Chen, H., Cho, K.-B. & Shaik, S. External electric field can control the catalytic cycle of cytochrome P450cam: a QM/MM Study. J. Phys. Chem. Lett. 1, 2082–2087 (2010).

    Article  CAS  Google Scholar 

  6. Gorin, C. F., Beh, E. S. & Kanan, M. W. An electric field-induced change in the selectivity of a metal oxide-catalyzed epoxide rearrangement. J. Am. Chem. Soc. 134, 186–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Gorin, C. F., Beh, E. S., Bui, Q. M., Dick, G. R. & Kanan, M. W. Interfacial electric field effects on a carbene reaction catalyzed by Rh porphyrins. J. Am. Chem. Soc. 135, 11257–11265 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Susarrey-Arce, A. et al. A new ATR-IR microreactor to study electric field-driven processes. Sensors and Actuators B: Chemical 220, 13–21 (2015).

    Article  CAS  Google Scholar 

  9. Hiberty, P. C., Megret, C., Song, L., Wu, W. & Shaik, S. Barriers for hydrogen vs. halogen exchange — an experimental manifestation of charge-shift bonding. J. Am. Chem. Soc. 128, 2836–2843 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Fried, S. D. & Boxer, S. G. Measuring electric fields and noncovalent interactions using the vibrational stark effect. Acc. Chem. Res. 48, 998–1006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oklejas, V., Sjostrom, C. & Harris, J. M. SERS detection of the vibrational stark effect from nitrile-terminated SAMs to probe electric fields in the diffuse double-layer. J. Am. Chem. Soc. 124, 2408–2409 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Franzen, S., Goldstein, R. F. & Boxer, S. G. Electric field modulation of electron transfer reaction rates in isotropic systems: long distance charge recombination in photosynthetic reaction centers. J. Phys. Chem. 94, 5135–5149 (1990).

    Article  CAS  Google Scholar 

  13. Lao, K., Franzen, S., Stanley, R. J., Lambright, D. G. & Boxer, S. G. Effects of applied electric fields on the quantum yields of the initial electron-transfer steps in bacterial photosynthesis. 1. quantum yield failure. J. Phys. Chem. 97, 13165–13171 (1993).

    Article  CAS  Google Scholar 

  14. Murgida, D. H. & Hildebrandt, P. Electron-transfer processes of cytochrome c at interfaces. New insights by surface-enhanced resonance raman spectroscopy. Acc. Chem. Res. 37, 854–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Wahadoszamen, M., Nakabayashi, T., Kang, S., Imahori, H. & Ohta, N. External electric field effects on absorption and fluorescence spectra of a fullerene derivative and its mixture with zinc-tetraphenylporphyrin doped in a PMMA film. J. Phys. Chem. B 110, 20354–20361 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ohta, N., Koizumi, M., Umeuchi, S., Nishimura, Y. & Yamazaki, I. External electric field effects on fluorescence in an electron donor and acceptor system: ethylcarbazole and dimethyl terephthalate in PMMA polymer films. J. Phys. Chem. 100, 16466–16471 (1996).

    Article  CAS  Google Scholar 

  17. Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Naaman, R., Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Hishikawa, A., Iwamae, A. & Yamanouchi, K. Ultrafast deformation of the geometrical structure of CO2 induced in intense laser fields. Phys. Rev. Lett. 83, 1127–1130 (1999).

    Article  CAS  Google Scholar 

  20. Alemani, M. et al. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 128, 14446–14447 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Darwish, N., Aragonès, A. C., Darwish, T., Ciampi, S. & Díez-Pérez, I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett. 14, 7064–7070 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Harzmann, G. D., Frisenda, R., van der Zant, H. S. & Mayor, M. Single-molecule spin switch based on voltage-triggered distortion of the coordination sphere. Angew. Chem. Int. Ed. 54, 13425–13430 (2015).

    Article  CAS  Google Scholar 

  23. Pocker, Y. & Buchholz, R. F. Electrostatic catalysis by ionic aggregates. II. Reversible elimination of hydrogen chloride from tert-butyl chloride and the rearrangement of 1-phenylallyl chloride in lithium perchlorate-diethyl ether solutions. J. Am. Chem. Soc. 92, 4033–4038 (1970).

    Article  CAS  Google Scholar 

  24. Shaik, S. S. What happens to molecules as they react? A valence bond approach to reactivity. J. Am. Chem. Soc. 103, 3692–3701 (1981).

    Article  CAS  Google Scholar 

  25. Shaik, S. & Shurki, A. Valence bond diagrams and chemical reactivity. Angew. Chem. Int. Ed. 38, 586–625 (1999).

    Article  Google Scholar 

  26. Pross, A. & Shaik, S. S. A qualitative valence bond approach to organic reactivity. Acc. Chem. Res. 16, 363–370 (1983).

  27. Cho, K.-B. et al. Compound I in heme thiolate enzymes: a comparative QM/MM study. J. Phys. Chem. A 112, 13128–13138 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Dandamudi, U. et al. A single-site mutation (F429H) converts the enzyme CYP 2B4 to a heme-oxygenase: a QM/MM study. J. Am. Chem. Soc. 134, 4053–4056 (2012).

    Article  CAS  Google Scholar 

  29. Warshel, A., Sharma, P. K., Kato, M., Xiang, Y., Liu, H. & Olsson, M. H. M. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Warshel, A. Electrostatic basis of structure-function correlation in proteins. Acc. Chem. Res. 14, 284–290 (1981).

    Article  CAS  Google Scholar 

  31. Fried, S. D., Bagchi, S. & Boxer, S. G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 346, 1510–1514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, C. T. et al. Probing the electrostatics of active site microenvironments along the catalytic cycle for escherichia coli dihydrofolate reductase. J. Am. Chem. Soc. 136, 10349–10360 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gryn'ova, G., Marshall, D. L., Blanksby, S. J. & Coote, M. L. Switching radical stability by pH-induced orbital conversion. Nat. Chem. 5, 474–481 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Klinska, M., Smith, L. M., Gryn'ova, G., Banwell, M. G. & Coote, M. L. Experimental demonstration of pH-dependent electrostatic catalysis of radical reactions. Chem. Sci. 6, 5623–5627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sowlati-Hashjin, S. & Matta, C. The chemical bond in external electric fields: energies, geometries, and vibrational Stark shifts of diatomic molecules. J. Chem. Phys. 139, 144101 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. De Biase, P. M. et al. Molecular basis for the electric field modulation of cytochrome c structure and function. J. Am. Chem. Soc. 131, 16248–16256 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Karafiloglou, P. Control of delocalization and structural changes by means of an electric field. J. Comput. Chem. 27, 1883–1891 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Wei, Y. et al. A theoretical study of the activation of nitromethane under applied electric fields. RSC Adv. 6, 24712–24718 (2016).

    Article  CAS  Google Scholar 

  39. Schirmer, B. & Grimme, S. Electric field induced activation of H2 — can DFT do the job? Chem. Commun. 46, 7942–7944 (2010).

    Article  CAS  Google Scholar 

  40. Shaik, S., Kumar, D., de Visser, S. P., Altun, A. & Thiel, W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem. Rev. 105, 2279–2328 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Ortiz de Montellano, P. R. & De Voss, J. J. Oxidizing species in the mechanism of cytochrome P450. Nat. Prod. Rep. 19, 477–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Shaik, S., Lai, W., Chen, H., Wang, Y. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs. Acc. Chem. Res. 43, 1154–1165 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Shaik, S., Milko, P., Schyman, P., Usharani, D. & Chen, H. Trends in aromatic oxidation reactions catalyzed by cytochrome P450 enzymes: a valence bond modeling. J. Chem. Theory Comput. 7, 327–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Bukowski, M. R. et al. A thiolate-ligated nonheme oxoiron(IV) complex relevant to cytochrome P450. Science 310, 1000–1002 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Cho, K.-B., Hirao, H., Shaik, S. & Nam, W. To rebound or dissociate? This is the mechanistic question in C–H hydroxylation by heme and nonheme metal-oxo complexes. Chem. Soc. Rev. 46, 1197–1210 (2016).

    Article  Google Scholar 

  46. Shaik, S., Chen, H. & Janardanan, D. Exchange-enhanced reactivity in bond activation by metal-oxo enzymes and synthetic reagents. Nat. Chem. 3, 19–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Arabi, A. A. & Matta, C. F. Effects of external electric fields on double proton transfer kinetics in the formic acid dimer. Phys. Chem. Chem. Phys. 13, 13738–13748 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Ceron-Carrasco, J. P., Cerezo, J. & Jacquemin, D. How DNA is damaged by external electric fields: selective mutation vs. random degradation. Phys. Chem. Chem. Phys. 16, 8243–8246 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Carbonell, E., Duran, M., Lledos, A. & Bertran, J. Catalysis of Friedel–Crafts reactions by electric fields. J. Phys. Chem. 95, 179–183 (1991).

    Article  CAS  Google Scholar 

  50. Zhou, Z. J. et al. Electric field-driven acid-base chemistry: proton transfer from acid (HCl) to base (NH3/H2O). J. Phys. Chem. A 115, 1418–1422 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Oklejas, V., Uibel, R. H., Horton, R. & Harris, J. M. Electric-field control of the tautomerization and metal ion binding reactivity of 8-hydroxyquinoline immobilized to an electrode surface. Anal. Chem. 80, 1891–1901 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Timerghazin, Q. K. & Talipov, M. R. Unprecedented external electric field effects on S-nitrosothiols: possible mechanism of biological regulation? J. Phys. Chem. Lett. 4, 1034–1038 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. De Biase, P. M., Doctorovich, F., Murgida, D. H. & Estrin, D. A. Electric field effects on the reactivity of heme model systems. Chem. Phys. Lett. 434, 121–126 (2007).

    Article  CAS  Google Scholar 

  54. Saita, A. M. & Saija, F. Miller experiments in atomistic computer simulation. Proc. Natl. Acad. Sci. USA 111, 13768–13773 (2014).

    Article  CAS  Google Scholar 

  55. Jissy, A. K. & Datta, A. Effect of external electric field on H-bonding and π-stacking in guanine aggregates. ChemPhysChem 13, 4163–4172 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Woodward, R. B. & Hoffmann, R. The conservation of orbital symmetry (Chemie, GmbH 1970).

    Google Scholar 

  57. Gryn'ova, G. & Coote, M. L. Origin and scope of long-range stabilizing interactions and associated SOMO–HOMO conversion in distonic radical anions. J. Am. Chem. Soc. 135, 15392–15403 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Gooding, J. J. & Ciampi, S. The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 40, 2704–2718 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, L. et al. TEMPO monolayers on Si(100) electrodes: electrostatic effects by the electrolyte and semiconduuctor space-charge on the electroactivity of a persistent radical. J. Am.Chem. Soc. 138, 9611–9619 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sason Shaik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Oriented electric fields as future smart reagents in chemistry (PDF 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nature Chem 8, 1091–1098 (2016). https://doi.org/10.1038/nchem.2651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing