Browse Articles

Filter By:

  • The insertion of metal atoms and heteroaromatic units provides a way to tune the optical, electronic and magnetic properties of graphene nanoribbons. Now the synthesis of a porphyrin-fused graphene nanoribbon with a narrow bandgap and high charge mobility has been achieved, and this material used to fabricate field-effect and single-electron transistors.

    • Qiang Chen
    • Alessandro Lodi
    • Harry L. Anderson
    ArticleOpen Access
  • Although hydrogels with complex, heterogeneous and reconfigurable structures are promising materials for use in intelligent systems, fabricating such hydrogels is challenging. Now it has been shown that they can be fabricated by reversibly gluing different hydrogel units using a photocontrolled metallopolymer adhesive. This method can be used to design hydrogels with customized functions.

    • Jiahui Liu
    • Yun-Shuai Huang
    • Si Wu
    ArticleOpen Access
  • Atomistic simulations have a broad range of applications from drug design to materials discovery. Machine learning interatomic potentials (MLIPs) have become an efficient alternative to computationally expensive ab initio simulations. Now a general reactive MLIP (called ANI-1xnr) has been developed and validated against a broad range of condensed-phase reactive systems.

    • Shuhao Zhang
    • Małgorzata Z. Makoś
    • Justin S. Smith
    ArticleOpen Access
  • Becoming an assistant professor brings with it several challenges, one of which is developing new relationships that can be professionally and personally beneficial. Shira Joudan reflects on getting to know people at a new institution, having different types of relationships, and how they help with happiness and success.

    • Shira Joudan
    Thesis
  • Ciro Romano, Jack I. Mansell, and David J. Procter have explored the versatility and selectivity of samarium diiodide, and its use as a radical relay catalyst.

    • Ciro Romano
    • Jack I. Mansell
    • David J. Procter
    In Your Element
  • A previous investigation of the anti-aromatic dianion of [18]annulene concluded that it consists of a mixture of two isomers. Now it has been shown that this dianion exists as a single isomer, with a different geometry from neutral [18]annulene, and that it can be reduced further to an aromatic tetraanion.

    • Wojciech Stawski
    • Yikun Zhu
    • Harry L. Anderson
    ArticleOpen Access
  • Nanopore label-free sequencing of DNA and RNA at the single-molecule level offers rapid readout, high accuracy, low cost and portability. This Review surveys technologies underpinning commercial and academic nanopore sequencing, and examines how underlying biochemical advances can fuel future developments in nanopore-based protein sequencing.

    • Adam Dorey
    • Stefan Howorka
    Review Article
  • The rapid generation of molecular complexity from a given molecular scaffold is crucial to drug discovery and development. Now the chemodivergent molecular editing of indoles using fluoroalkyl carbenes has been developed to modularly access four different types of fluorine-containing N-heterocyclic compound with high molecular complexity.

    • Shaopeng Liu
    • Yong Yang
    • Xihe Bi
    Article
  • Single-particle cryo-electron microscopy and all-atom molecular dynamics simulations provide atomic details of ATP hydrolysis in the multimeric enzyme p97.

    • Nadia Elghobashi-Meinhardt
    News & Views
  • Electrolysers can upgrade CO2 into high-value chemicals, but there are few tools capable of tracking the reactions that occur within these devices during operation. Now an electrolysis optical coherence tomography platform has been developed to visualize the electrochemical conversion of CO2 to CO, plus the movement of components, within the device.

    • Xin Lu
    • Chris Zhou
    • Curtis P. Berlinguette
    Article
  • Although generally perceived as an old-fashioned and unselective tool to build molecules, the photochemistry community is now re-discovering the power of UV light and is using key mechanistic information to develop new catalytic processes driven by visible light. This Perspective discusses the progress and impact of UV light in organic synthesis.

    • Giulio Goti
    • Kavyasree Manal
    • Luca Dell’Amico
    Perspective
  • Electrocatalytic transformations often involve the concerted transfer of electrons and protons at electrode interfaces; however, these processes are not well understood. Now, experiments on an electrode that features well-defined molecular sites deepen fundamental understanding of such transfers to pave the way for future catalysts.

    • Siyuan L. Xie
    • Eva M. Nichols
    News & Views
  • Developing a generalizable method for blocking and rescuing tryptophan (Trp) interactions would enable the gain-of-function manipulation of various Trp-containing proteins but has so far been challenging. Now a genetically encoded N1-vinyl-caged Trp capable of rapid and bioorthogonal decaging enables site-specific activation of Trp on a protein of interest within living cells.

    • Yuchao Zhu
    • Wenlong Ding
    • Peng R. Chen
    Article
  • Although photoinduced concerted multiple-bond-rotation processes are known in photoactive biological systems, the synthesis of compounds exhibiting similar behaviour has proven challenging. Now a thioamide-based system featuring chalcogen substituents has been shown to exhibit photoinduced C–N/C–C rotation; the rotation mode can be switched depending on external stimuli such as temperature and light irradiation.

    • Shotaro Nagami
    • Rintaro Kaguchi
    • Akira Katsuyama
    Article
  • While chlorinated compounds are ubiquitous in chemical synthesis, they have a negative impact on human health and the environment. Now, a sustainable tandem catalytic process has been developed that uses chlorine-containing waste as chlorination reagents. This approach represents a promising way for the viable management of chlorinated compounds.

    • Mingyang Liu
    • Xinbang Wu
    • Paul J. Dyson
    ArticleOpen Access
  • The biomolecular principles underlying the formation of multiphasic condensates have been difficult to elucidate owing to a paucity of tools, especially within living cells. In this work synthetic orthogonal protein scaffolds alongside molecular simulations are used to highlight how the oligomerization of disordered proteins can asymmetrically drive miscibility–immiscibility transitions.

    • Ushnish Rana
    • Ke Xu
    • Clifford P. Brangwynne
    ArticleOpen Access
  • Actinide–metal multiple bonds are relatively rare, with isolable examples under normal experimental conditions typically restricted to complexes containing a polar covalent σ bond supplemented by up to two dative π bonds. Now complexes featuring polar covalent double and triple bonds between thorium and antimony have been synthesized.

    • Jingzhen Du
    • Kevin Dollberg
    • Stephen T. Liddle
    Article
  • New drug leads can be developed through modification of a natural product’s framework, but this is possible only if the compound is abundant and contains modifiable moieties. Now a strategy is introduced for accessing a scarce indole alkaloid and several expanded, contracted and distorted analogues, one of which shows anti-cancer activity.

    • Youming Huang
    • Xinghan Li
    • Amir H. Hoveyda
    Article