Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics

Abstract

Sequencing of nucleic acids with nanopores has emerged as a powerful tool offering rapid readout, high accuracy, low cost and portability. This label-free method for sequencing at the single-molecule level is an achievement on its own. However, nanopores also show promise for the technologically even more challenging sequencing of polypeptides, something that could considerably benefit biological discovery, clinical diagnostics and homeland security, as current techniques lack portability and speed. Here we survey the biochemical innovations underpinning commercial and academic nanopore DNA/RNA sequencing techniques, and explore how these advances can fuel developments in future protein sequencing with nanopores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protein nanopores used for portable and scalable DNA sequencing.
Fig. 2: The CsgG pore and key regions for improved nucleic-acid sequencing.
Fig. 3: Nucleic acid sequencing methods used in devices from ONT.
Fig. 4: Alternative nanopore methods for nucleic-acid sequencing.
Fig. 5: Nanopore-based detection of proteins.
Fig. 6: Protein pores used for peptide recognition and sequencing.
Fig. 7: Nanopore-based protein fingerprinting and sequencing techniques.

Similar content being viewed by others

References

  1. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Charalampous, T. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat. Biotechnol. 37, 783–792 (2019).

    CAS  PubMed  Google Scholar 

  4. Deng, X. et al. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat. Microbiol. 5, 443–454 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, B. et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592, 122–127 (2021).

    ADS  CAS  PubMed  Google Scholar 

  6. Cao, X. et al. Alt-RPL36 downregulates the PI3K-AKT-mTOR signaling pathway by interacting with TMEM24. Nat. Commun. 12, 508 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, Y. et al. Proteomic profiling of HIV-1 infection of human CD4+ T cells identifies PSGL-1 as an HIV restriction factor. Nat. Microbiol. 4, 813–825 (2019).

    CAS  PubMed  Google Scholar 

  8. Leggett, R. M. et al. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nat. Microbiol. 5, 430–442 (2020).

    CAS  PubMed  Google Scholar 

  9. Li, D. et al. Genomic profiling informs diagnoses and treatment in vascular anomalies. Nat. Med. 29, 1530–1539 (2023).

    CAS  PubMed  Google Scholar 

  10. Macken, W. L., Vandrovcova, J., Hanna, M. G. & Pitceathly, R. D. S. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat. Rev. Neurol. 17, 215–230 (2021).

    PubMed  Google Scholar 

  11. Sero, D. et al. Facial recognition from DNA using face-to-DNA classifiers. Nat. Commun. 10, 2557 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  12. Cornelis, S., Gansemans, Y., Deleye, L., Deforce, D. & Van Nieuwerburgh, F. Forensic SNP genotyping using nanopore MinION sequencing. Sci. Rep. 7, 41759 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liao, J. et al. Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution. Nat. Microbiol. 6, 1021–1030 (2021).

    CAS  PubMed  Google Scholar 

  14. Cuypers, W. L. et al. A global genomic analysis of Salmonella Concord reveals lineages with high antimicrobial resistance in Ethiopia. Nat. Commun. 14, 3517 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    ADS  CAS  PubMed  Google Scholar 

  16. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Booth, M. J. in Nucleic Acids in Chemistry and Biology (eds Blackburn, G. M. et al.) Ch. 8 (The Royal Society of Chemistry, 2022).

  18. Eisenstein, M. Illumina faces short-read rivals. Nat. Biotechnol. 41, 3–5 (2023).

    CAS  PubMed  Google Scholar 

  19. Arslan, S. et al. Sequencing by avidity enables high accuracy with low reagent consumption. Nat. Biotechnol. 42, 132–138 (2024).

    CAS  PubMed  Google Scholar 

  20. Rothberg, J. M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).

    CAS  PubMed  Google Scholar 

  21. Slatko, B. E., Gardner, A. F. & Ausubel, F. M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 122, e59 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y. Y., Zhao, Y., Bollas, A., Wang, Y. Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Marx, V. Method of the year: long-read sequencing. Nat. Methods 20, 6–11 (2023).

    CAS  PubMed  Google Scholar 

  26. Deamer, D., Akeson, M., Branton, D., Kasianowicz, J. J. & Bezrukov, S. M. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wanunu, M. Nanopores: a journey towards DNA sequencing. Phys. Life Rev. 9, 125–158 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  28. Alper, J. From the bioweapons trenches, new tools for battling microbes. Science 284, 1754–1755 (1999).

    CAS  PubMed  Google Scholar 

  29. Kasianowicz, J. J. & Bezrukov, S. M. On ‘three decades of nanopore sequencing’. Nat. Biotechnol. 34, 481–482 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Bayley, H. Nanopore sequencing: from imagination to reality. Clin. Chem. 61, 25–31 (2015).

    CAS  PubMed  Google Scholar 

  31. Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22, 295 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuen, Z. W. et al. Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing. Nat. Commun. 12, 3438 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, H., Giordano, F. & Ning, Z. Oxford nanopore MinION sequencing and genome assembly. Genom. Proteom. Bioinform. 14, 265–279 (2016).

    Google Scholar 

  34. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan, S. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis Porin A (MspA) nanopore. Nano Lett. 21, 6703–6710 (2021).

    ADS  CAS  PubMed  Google Scholar 

  36. Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, S. et al. Bottom-up fabrication of a proteasome-nanopore that unravels and processes single proteins. Nat. Chem. 13, 1192–1199 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).

    CAS  PubMed  Google Scholar 

  39. Motone, K. et al. Multi-pass, single-molecule nanopore reading of long protein strands with single-amino acid sensitivity. Preprint at https://doi.org/10.1101/2023.10.19.563182 (2023).

  40. Martin-Baniandres, P. et al. Enzyme-less nanopore detection of post-translational modifications within long polypeptides. Nat. Nanotechnol 18, 1335–1340 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sauciuc, A. et al. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat Biotechnol. https://doi.org/10.1038/s41587-023-01954-x (2023).

  42. Zhang, Y. et al. Peptide sequencing based on host–guest interaction-assisted nanopore sensing. Nat. Methods 21, 102–109 (2024).

    CAS  PubMed  Google Scholar 

  43. Wang, K. et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat. Methods 21, 92–101 (2024).

    CAS  PubMed  Google Scholar 

  44. Drachman, N. Nanopore ion sources deliver single amino acid and peptide ions directly into high vacuum. Preprint at https://www.researchsquare.com/article/rs-1686064/v1 (2022).

  45. Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Eisenstein, M. Seven technologies to watch in 2023. Nature 613, 794–797 (2023).

    ADS  CAS  PubMed  Google Scholar 

  47. MacCoss, M. J., Alfaro, J., Wanunu, M., Faivre, D. A. & Slavov, N. Sampling the proteome by emerging single-molecule and mass-spectrometry methods. Nat. Methods 20, 339–346 (2022).

    Google Scholar 

  48. Leggett, R. M. & Clark, M. D. A world of opportunities with nanopore sequencing. J. Exp. Bot. 68, 5419–5429 (2017).

    CAS  PubMed  Google Scholar 

  49. Brown, C. G. & Clarke, J. Nanopore development at Oxford Nanopore. Nat. Biotechnol. 34, 810–811 (2016).

    CAS  PubMed  Google Scholar 

  50. Restrepo-Pérez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).

    ADS  PubMed  Google Scholar 

  51. Howorka, S. Building membrane nanopores. Nat. Nanotechnol. 12, 619–630 (2017).

    ADS  CAS  PubMed  Google Scholar 

  52. Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    ADS  CAS  PubMed  Google Scholar 

  53. Miles, B. N. et al. Single molecule sensing with solid-state nanopores: novel materials, methods and applications. Chem. Soc. Rev. 42, 15–28 (2013).

    CAS  PubMed  Google Scholar 

  54. Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).

    ADS  CAS  PubMed  Google Scholar 

  55. Wei, R., Gatterdam, V., Wieneke, R., Tampé, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 7, 257–263 (2012).

    ADS  CAS  PubMed  Google Scholar 

  56. Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007).

    ADS  CAS  PubMed  Google Scholar 

  57. Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 359, 792–796 (2018).

    Google Scholar 

  58. He, Y., Tsutsui, M., Zhou, Y. & Miao, X. S. Solid-state nanopore systems: from materials to applications. NPG Asia Mater. 13, 48 (2021).

    ADS  Google Scholar 

  59. Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    ADS  CAS  Google Scholar 

  60. Moreau, C. J., Dupuis, J. P., Revilloud, J., Arumugam, K. & Vivaudou, M. Coupling ion channels to receptors for biomolecule sensing. Nat. Nanotechnol. 3, 620–625 (2008).

    CAS  PubMed  Google Scholar 

  61. Cao, C. et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat. Nanotechnol. 11, 713–718 (2016).

    ADS  CAS  PubMed  Google Scholar 

  62. Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 12, 4895–4900 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    ADS  CAS  PubMed  Google Scholar 

  64. Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).

    ADS  CAS  PubMed  Google Scholar 

  65. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    ADS  CAS  PubMed  Google Scholar 

  66. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at five angstrom precision. Nat. Biotechnol. 30, 344–348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stoddart, D. et al. Nucleobase recognition in ssDNA at the central constriction of the α-hemolysin pore. Nano Lett. 10, 3633–3637 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stoddart, D., Maglia, G., Mikhailova, E., Heron, A. J. & Bayley, H. Multiple base-recognition sites in a biological nanopore: two heads are better than one. Angew. Chem. Int. Ed. 49, 556–559 (2010).

    CAS  Google Scholar 

  70. Van Gerven, N., Van der Verren, S. E., Reiter, D. M. & Remaut, H. The role of functional amyloids in bacterial virulence. J. Mol. Biol. 430, 3657–3684 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cao, B. et al. Structure of the nonameric bacterial amyloid secretion channel. Proc. Natl Acad. Sci. USA 111, E5439–E5444 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Boža, V., Brejová, B. & Vinař, T. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS ONE 12, e0178751 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. David, M., Dursi, L. J., Yao, D., Boutros, P. C. & Simpson, J. T. Nanocall: an open source basecaller for Oxford nanopore sequencing data. Bioinformatics. 33, 49–55 (2017).

    CAS  PubMed  Google Scholar 

  75. Jayasinghe, L. & Wallace, J. E. Mutant pore. US patent 11186868 B2 (2021).

  76. Nanopore Sequencing Accuracy. Oxford Nanopore Technologies https://nanoporetech.com/accuracy (2023).

  77. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sereika, M. et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat. Methods 19, 823–826 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    ADS  CAS  PubMed  Google Scholar 

  81. Laszlo, A. H., Derrington, I. M. & Gundlach, J. H. MspA nanopore as a single-molecule tool: from sequencing to SPRNT. Methods 105, 75–89 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Heron, A. et al. Modified helicases. US patent 2018/0037874 A9 (2018).

  83. He, X. et al. The T4 phage SF1B helicase Dda Is structurally optimized to perform DNA strand separation. Structure 20, 1189–1200 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Craig, J. M. et al. Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc. Natl Acad. Sci. USA 114, 11932–11937 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stava, E. et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Noakes, M. T. et al. Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nat. Biotechnol. 37, 651–656 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Laszlo, A. H., Derrrington, I. M. & Gundlach, J. H. Subangstrom measurements of enzyme function using a biological nanopore, SPRNT. Methods Enzymol. 582, 387–414 (2017).

    CAS  PubMed  Google Scholar 

  88. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Clarke, J., White, J., Milton, J. & Brown, C. Coupling method. PCT patent 2012/164270 A1 (2012).

  90. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).

    CAS  PubMed  Google Scholar 

  91. Byrne, A. et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun. 8, 16027 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    CAS  PubMed  Google Scholar 

  93. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Abu-Shumays, R. L. et al. Direct nanopore sequencing of individual full length tRNA strands. ACS Nano 15, 16642–16653 (2021).

    PubMed  PubMed Central  Google Scholar 

  95. Olsen, H.E. et al. Advances in nanopore direct RNA sequencing. Nat. Methods 19, 1160–1164 (2022).

    PubMed  Google Scholar 

  96. Miller, C. Ion Channel Reconstitution (Springer, 2013).

  97. Cao, C., Liao, D. F., Yu, J., Tian, H. & Long, Y. T. Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Nat. Protoc. 12, 1901–1911 (2017).

    CAS  PubMed  Google Scholar 

  98. Baba, T. et al. Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochim. Biophys. Acta Biomembr. 1421, 91–102 (1999).

    CAS  Google Scholar 

  99. Schmidt, J. Membrane platforms for biological nanopore sensing and sequencing. Curr. Opin. Biotechnol. 39, 17–27 (2016).

    CAS  PubMed  Google Scholar 

  100. Holden, M. A., Needham, D. & Bayley, H. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007).

    CAS  PubMed  Google Scholar 

  101. Funakoshi, K., Suzuki, H. & Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169–8174 (2006).

    CAS  PubMed  Google Scholar 

  102. Urban, M. et al. Highly parallel transport recordings on a membrane-on-nanopore chip at single molecule resolution. Nano Lett. 14, 1674–1680 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jeon, T.-J., Malmstadt, N. & Schmidt, J. J. Hydrogel-encapsulated lipid membranes. J. Am. Chem. Soc. 128, 42–43 (2006).

    CAS  PubMed  Google Scholar 

  104. Shim, J. W. & Gu, L. Q. Stochastic sensing on a modular chip containing a single-ion channel. Anal. Chem. 79, 2207–2213 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Heitz, B. A., Jones, I. W., Hall, H. K., Aspinwall, C. A. & Saavedra, S. S. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings. J. Am. Chem. Soc. 132, 7086–7093 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Daly, S. M., Heffernan, L. A., Barger, W. R. & Shenoy, D. K. Photopolymerization of mixed monolayers and black lipid membranes containing gramicidin A and diacetylenic phospholipids. Langmuir 22, 1215–1222 (2006).

    CAS  PubMed  Google Scholar 

  107. Nardin, C., Winterhalter, M. & Meier, W. Giant free-standing ABA triblock copolymer membranes. Langmuir 16, 7708–7712 (2000).

    CAS  Google Scholar 

  108. Meier, W., Nardin, C. & Winterhalter, M. Reconstitution of channel proteins in (polymerized) ABA triblock copolymer membranes. Angew. Chem. Int. Ed. 39, 4599–4602 (2000).

    CAS  Google Scholar 

  109. Hyde, J. R. et al. Formation of array of membranes and apparatus therefor. WO2014064443A3 (2014).

  110. González-Pérez, A., Stibius, K. B., Vissing, T., Nielsen, C. H. & Mouritsen, O. G. Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins. Langmuir 25, 10447–10450 (2009).

    PubMed  Google Scholar 

  111. De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 34, 2666–2669 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. Fukasawa, Y., Ermini, L., Wang, H., Carty, K. & Cheung, M.-S. LongQC: a quality control tool for third generation sequencing long read data. G3 Genes Genomes Genet. 10, 1193–1196 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lanfear, R., Schalamun, M., Kainer, D., Wang, W. & Schwessinger, B. MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics. 35, 523–525 (2019).

    CAS  PubMed  Google Scholar 

  114. Tarraga, J., Gallego, A., Arnau, V., Medina, I. & Dopazo, J. HPG pore: an efficient and scalable framework for nanopore sequencing data. BMC Bioinformatics 17, 107 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Loman, N. J. & Quinlan, A. R. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 30, 3399–3401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Payne, A., Holmes, N., Rakyan, V. & Loose, M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 35, 2193–2198 (2019).

    CAS  PubMed  Google Scholar 

  117. Gamaarachchi, H. et al. Fast nanopore sequencing data analysis with SLOW5. Nat. Biotechnol. 40, 1026–1029 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    CAS  PubMed  Google Scholar 

  119. Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  120. Ni, P. et al. DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35, 4586–4595 (2019).

    CAS  PubMed  Google Scholar 

  121. Liu, Q. et al. NanoMod: a computational tool to detect DNA modifications using nanopore long-read sequencing data. BMC Genomics 20, 78 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu, H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  123. Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021).

    CAS  PubMed  Google Scholar 

  124. Leger, A. et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hendra, C. et al. Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nat. Methods 19, 1590–1598 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Miclotte, G. et al. Jabba: hybrid error correction for long sequencing reads. Algorithms Mol. Biol. 11, 10 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Morisse, P., Lecroq, T. & Lefebvre, A. Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph. Bioinformatics 34, 4213–4222 (2018).

    CAS  PubMed  Google Scholar 

  128. Madoui, M.-A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Sović, I. et al. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat. Commun. 7, 11307 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  130. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ewing, A. D. et al. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell 80, 915–928.e5 (2020).

    CAS  PubMed  Google Scholar 

  133. Deonovic, B., Wang, Y., Weirather, J., Wang, X.-J. & Au, K. F. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing. Nucleic Acids Res. 45, e32 (2017).

    PubMed  Google Scholar 

  134. Lucká, M. et al. WarpSTR: determining tandem repeat lengths using raw nanopore signals. Bioinformatics 39, btad388 (2023).

    PubMed  PubMed Central  Google Scholar 

  135. Mohamed, M. et al. TrEMOLO: accurate transposable element allele frequency estimation using long-read sequencing data combining assembly and mapping-based approaches. Genome Biol. 24, 63 (2023).

    PubMed  PubMed Central  Google Scholar 

  136. De Lannoy, C. et al. The long reads ahead: de novo genome assembly using the MinION. F1000Res. 6, 1083 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Anderson, B. N. Optically based nanopore sequencing. EP patent 3482196 B1 (2022).

  138. Huber, M. & Davidson, S. Efficient optical analysis of polymers using arrays of nanostructures. EP patent 3209800 B1 (2022).

  139. Huber, M. Nanopore-based polymer analysis with mutually-quenching fluorescent labels. WO2016057829A1 (2016).

  140. Huber, M., Assad, O., Cleek, T. & Davlieva, M. Fluorescent polynucleotide sequencing methods and compositions. WO20230193376 (2023).

  141. Buzby, P. R., Meller, A., McNally, B., Fan, A. & Olejnik-Krzynmanska, E. Sequence preserved DNA conversion for optical nanopore sequencing. WO2012135658A2 (2012).

  142. McNally, B. et al. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. 10, 2237–2244 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kokoris, M. S. & McRuer, R. N. High throughput nucleic acid sequencing by expansion. US patent US7939259B2 (2011).

  144. Kumar, S. et al. PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis. Sci. Rep. 2, 684 (2012).

    PubMed  PubMed Central  Google Scholar 

  145. Masoud, V. et al. Systems and methods for measurment and sequencing of bio-molecules. EP patent 3449247 B1 (2021).

  146. Ohshiro, T. et al. Single-molecule electrical random resequencing of DNA and RNA. Sci. Rep. 2, 501 (2012).

    PubMed  PubMed Central  Google Scholar 

  147. Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286–290 (2010).

    ADS  CAS  PubMed  Google Scholar 

  148. Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  149. Huang, S. et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 5, 868–873 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, J. W. Nanoelectrode-gated detection of individual molecules with potential for rapid DNA sequencing. Solid State Phenom. 121–123, 1379–1386 (2007).

    Google Scholar 

  151. Zhang, Y. et al. Single molecule DNA resensing using a two-pore device. Small 14, 1801890 (2018).

    Google Scholar 

  152. Liu, X., Zhang, Y., Nagel, R., Reisner, W. & Dunbar, W. B. Controlling DNA tug-of-war in a dual nanopore device. Small 15, 1901704 (2019).

    Google Scholar 

  153. Liu, X. et al. Flossing DNA in a dual nanopore device. Small 16, 1905379 (2020).

    CAS  Google Scholar 

  154. Rand, A. et al. Electronic mapping of a bacterial genome with dual solid-state nanopores and active single-molecule control. ACS Nano 16, 5258–5273 (2021).

    Google Scholar 

  155. Choudhary, A. et al. High-fidelity capture, threading, and infinite-depth sequencing of single DNA molecules with a double-nanopore system. ACS Nano. 14, 15566–15576 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Oliver, J. S. Devices and methods for determining the length of biopolymers and distances between probes bound thereto. US patent 8262879 B2 (2012).

  157. Oliver, J. S. et al. High-definition electronic genome maps from single molecule data. Preprint at https://www.biorxiv.org/content/10.1101/139840v1 (2017).

  158. Passera, A. et al. Characterization of Lysinibacillus fusiformis strain S4C11: in vitro, in planta and in silico analyses reveal a plant-benefcial microbe. Microbiol. Res. 244, 126665 (2021).

    CAS  PubMed  Google Scholar 

  159. Weigand, M. R. et al. Screening and genomic characterization of filamentous hemagglutinin-deficient Bordetella pertussis. Infect. Immun. 86, 5–7 (2018).

    Google Scholar 

  160. Kaiser, M. D. et al. Automated structural variant verification in human genomes using single-molecule electronic DNA mapping. Preprint at https://www.biorxiv.org/content/10.1101/140699v1 (2017).

  161. Bošković, F. et al. Simultaneous identification of viruses and viral variants with programmable DNA nanobait. Nat. Nanotechnol. 18, 290–298 (2023).

    ADS  PubMed  PubMed Central  Google Scholar 

  162. Bošković, F. & Keyser, U. F. Nanopore microscope identifies RNA isoforms with structural colours. Nat. Chem. 14, 1258–1264 (2022).

    PubMed  Google Scholar 

  163. Takulapalli, B. Field effect transistor, device including the transistor, and methods of forming and using same. US patent 2020/0096505 A1 (2020).

  164. Li, R. et al. QitanTech nanopore long-read sequencing enables rapid resolution of complete genomes of multi-drug resistant pathogens. Front. Microbiol. 13, 778659 (2022).

    PubMed  PubMed Central  Google Scholar 

  165. Hou, Y. et al. Forensic nanopore sequencing of microhaplotype markers using QitanTech’s QNome. Genetics 57, 102657 (2022).

    Google Scholar 

  166. Yam, C. et al. DNA sequencing based on electronic tunneling in a gold nanogap: a first-principles study. Phys. Chem. Chem. Phys. 24, 5748–5754 (2022).

    PubMed  Google Scholar 

  167. Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 8, 939–945 (2013).

    ADS  CAS  PubMed  Google Scholar 

  168. Mojtabavi, M., Vahidmohammadi, A., Liang, W., Beidaghi, M. & Wanunu, M. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano. 13, 3042–3053 (2019).

    CAS  PubMed  Google Scholar 

  169. Schneider, G. F. et al. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nat. Commun. 4, 2619 (2013).

    ADS  PubMed  Google Scholar 

  170. Nicoli, F., Verschueren, D., Klein, M., Dekker, C. & Jonsson, M. P. DNA translocations through solid-state plasmonic nanopores. Nano Lett. 14, 6917–6925 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  171. Assad, O. N. et al. Light-enhancing plasmonic-nanopore biosensor for superior single-molecule detection. Adv. Mater. 29, 1605442 (2017).

    ADS  Google Scholar 

  172. Larkin, J., Henley, R. Y., Jadhav, V., Korlach, J. & Wanunu, M. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat. Nanotechnol. 12, 1169–1175 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang, Y., Tang, Y., Tan, C. & Xu, W. Toward nanopore electrospray mass spectrometry: nanopore effects in the analysis of bacteria. ACS Cent. Sci. 6, 1001–1008 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Bush, J. et al. The nanopore mass spectrometer. Rev. Sci. Instrum. 88, 113307 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  175. Movileanu, L., Howorka, S., Braha, O. & Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 18, 1091–1095 (2001).

    Google Scholar 

  176. Thakur, A. K. & Movileanu, L. Real-time measurement of protein–protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 37, 96–104 (2019).

    CAS  Google Scholar 

  177. Mayer, S. F., Cao, C. & Peraro, M. D. Biological nanopores for single-molecule sensing. iScience 25, 104145 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lukoyanova, N. et al. Conformational changes during pore formation by the perforin-related protein pleurotolysin. PLoS Biol. 13, 1002049 (2015).

    Google Scholar 

  179. Wallace, A. J. et al. E. coli hemolysin E (Hlye, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100, 265–276 (2000).

    CAS  PubMed  Google Scholar 

  180. Huang, G. et al. Electro-osmotic vortices promote the capture of folded proteins by PlyAB nanopores. Nano Lett. 20, 3819–3827 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  181. Galenkamp, N. S., Soskine, M., Hermans, J., Wloka, C. & Maglia, G. Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores. Nat. Commun. 9, 4085 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  182. Soskine, M., Biesemans, A., De Maeyer, M. & Maglia, G. Tuning the size and properties of ClyA nanopores assisted by directed evolution. J. Am. Chem. Soc. 135, 13456–13463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Galenkamp, N. S., Biesemans, A. & Maglia, G. Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings. Nat. Chem. 12, 481–488 (2020).

    CAS  PubMed  Google Scholar 

  184. Xing, Y., Dorey, A., Jayasinghe, L. & Howorka, S. Highly shape- and size-tunable membrane nanopores made with DNA. Nat. Nanotechnol. 17, 708–713 (2022).

    ADS  CAS  PubMed  Google Scholar 

  185. Lanphere, C. et al. Design, assembly and characterization of membrane-spanning DNA nanopores. Nat. Protoc. 16, 86–130 (2021).

    CAS  PubMed  Google Scholar 

  186. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    ADS  CAS  PubMed  Google Scholar 

  187. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    ADS  Google Scholar 

  188. Jiang, S., Ge, Z., Mou, S., Yan, H. & Fan, C. Designer DNA nanostructures for therapeutics. Chem 7, 1156–1179 (2021).

    CAS  Google Scholar 

  189. Dey, S. et al. A reversibly gated protein-transporting membrane channel made of DNA. Nat. Commun. 13, 2271 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  190. Diederichs, T. et al. Synthetic protein-conductive membrane nanopores built with DNA. Nat. Commun. 10, 5018 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kwok, H., Briggs, K. & Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS ONE 9, e92880 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  192. Li, W. et al. Single protein molecule detection by glass nanopores. ACS Nano 7, 4129–4134 (2013).

    CAS  PubMed  Google Scholar 

  193. Bell, N. A. W., Chen, K., Ghosal, S., Ricci, M. & Keyser, U. F. Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore. Nat. Commun. 8, 380 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  194. Sze, J. Y. Y., Ivanov, A. P., Cass, A. E. G. & Edel, J. B. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat. Commun. 8, 1552 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  195. Maffeo, C. et al. Modeling and simulation of ion channels. Chem. Rev. 112, 6250–6284 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Varongchayakul, N., Song, J., Meller, A. & Grinstaff, M. W. Single-molecule protein sensing in a nanopore: a tutorial. Chem. Soc. Rev. 47, 8512–8524 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Firnkes, M., Pedone, D., Knezevic, J., Döblinger, M. & Rant, U. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis and electroosmosis. Nano Lett. 10, 2162–2167 (2010).

    ADS  CAS  PubMed  Google Scholar 

  198. Schmid, S., Stömmer, P., Dietz, H. & Dekker, C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nat. Nanotechnol. 16, 1244–1250 (2021).

    ADS  CAS  PubMed  Google Scholar 

  199. Bandara, Y. M. N. D. Y., Farajpour, N. & Freedman, K. J. Nanopore current enhancements lack protein charge dependence and elucidate maximum unfolding at protein’s isoelectric point. J. Am. Chem. Soc. 144, 3063–3073 (2022).

    CAS  PubMed  Google Scholar 

  200. Restrepo-Pérez, L., Shalini, J., Aksimentiev, A., Joo, C. & Dekker, C. SDS-assisted protein transport through solid-state nanopores. Nanoscale 9, 11685–11693 (2017).

    PubMed  PubMed Central  Google Scholar 

  201. Rivas, F. et al. Label-free analysis of physiological hyaluronan size distribution with a solid-state nanopore sensor. Nat. Commun. 9, 1037 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  202. Plesa, C. et al. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lin, C. Y. et al. Ultrafast polymer dynamics through a nanopore. Nano Lett. 22, 8719–8727 (2022).

    ADS  CAS  PubMed  Google Scholar 

  204. Chau, C. C., Radford, S. E., Hewitt, E. W. & Actis, P. Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore. Nano Lett. 20, 5553–5561 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  205. Keyser, U. F. Enhancing nanopore sensing with DNA nanotechnology. Nat. Nanotechnol. 11, 106–108 (2016).

    ADS  CAS  PubMed  Google Scholar 

  206. Bell, N. A. W. & Keyser, U. F. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat. Nanotechnol. 11, 645–651 (2016).

    ADS  CAS  PubMed  Google Scholar 

  207. Tripathi, P. et al. Electrical unfolding of cytochrome c during translocation through a nanopore constriction. Proc. Natl Acad. Sci. USA 118, e2016262118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Movileanu, L., Schmittschmitt, J. P., Scholtz, J. M. & Bayley, H. Interactions of peptides with a protein pore. Biophys. J. 89, 1030–1045 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  209. Rodriguez-Larrea, D. & Bayley, H. Multistep protein unfolding during nanopore translocation. Nat. Nanotechnol. 8, 288–295 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  210. Feng, J. et al. Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates. Commun. Biol. 3, 159 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Rosen, C. B., Bayley, H. & Rodriguez-Larrea, D. Free-energy landscapes of membrane co-translocational protein unfolding. Commun. Biol. 3, 160 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Rodriguez-Larrea, D. Single-amino acid discrimination in proteins with homogeneous nanopore sensors and neural networks. Biosens. Bioelectron. 180, 113108 (2021).

    CAS  PubMed  Google Scholar 

  213. Nivala, J., Mulroney, L., Li, G., Schreiber, J. & Akeson, M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS Nano 8, 12365–12375 (2014).

    CAS  PubMed  Google Scholar 

  214. Yao, Y., Docter, M., Van Ginkel, J., De Ridder, D. & Joo, C. Single-molecule protein sequencing through fingerprinting: computational assessment. Phys. Biol. 12, 055003 (2015).

    ADS  PubMed  Google Scholar 

  215. Ohayon, S., Girsault, A., Nasser, M., Shen-Orr, S. & Meller, A. Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification. PLoS Comput. Biol. 15, e1007067 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lucas, F. L. R., Versloot, R. C. A., Yakovlieva, L., Walvoort, M. T. C. & Maglia, G. Protein identification by nanopore peptide profiling. Nat. Commun. 12, 5795 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  217. Afshar Bakshloo, M. et al. Nanopore-based protein identification. J. Am. Chem. Soc. 144, 2716–2725 (2022).

    CAS  PubMed  Google Scholar 

  218. Yu, L. et al. Unidirectional single-file transport of full-length proteins through a nanopore. Nat. Biotechnol. 41, 1130–1139 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Restrepo-Pérez, L. et al. Resolving chemical modifications to a single amino acid within a peptide using a biological nanopore. ACS Nano 13, 13668–13676 (2019).

    PubMed  PubMed Central  Google Scholar 

  220. Wang, R. et al. Single-molecule discrimination of labeled DNAs and polypeptides using photoluminescent-free TiO2 nanopores. ACS Nano 12, 11648–11656 (2018).

    CAS  PubMed  Google Scholar 

  221. Cardozo, N. et al. Multiplexed direct detection of barcoded protein reporters on a nanopore array. Nat. Biotechnol. 40, 42–46 (2022).

    CAS  PubMed  Google Scholar 

  222. Kennedy, E., Dong, Z., Tennant, C. & Timp, G. Reading the primary structure of a protein with 0.07-nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 11, 968–976 (2016).

    ADS  CAS  PubMed  Google Scholar 

  223. Rosen, C. B., Rodriguez-Larrea, D. & Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 32, 179–181 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Restrepo-Pérez, L., Wong, C. H., Maglia, G., Dekker, C. & Joo, C. Label-free detection of post-translational modifications with a nanopore. Nano Lett. 19, 7957–7964 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  225. Behrends, J. C. Resolving isomeric posttranslational modifications using a biological nanopore as a sensor of molecular shape. J. Am. Chem. Soc. 144, 16060–16068 (2022).

    PubMed  Google Scholar 

  226. Ohshiro, T. et al. Detection of post-translational modifications in single peptides using electron tunnelling currents. Nat. Nanotechnol. 9, 835–840 (2014).

    ADS  CAS  PubMed  Google Scholar 

  227. Zhao, Y. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9, 466–473 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  228. Brinkerhoff, D. H. & Dekker, C. Protein and peptide fingerprinting and sequencing by nanopore translocation of peptide-oligonucleotide complexes. PCT patent 2021/133168 A1 (2021).

  229. Heron, J. A., Edward, G. J. & Slawa, S. M. Method of characterising a target polypeptide using a nanopore. PCT patent 2021/111125 A1 (2021).

  230. Nova, I. C. et al. Detection of phosphorylation post-translational modifications along single peptides with nanopores. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01839-z (2023).

  231. Boskovic, F. & Keyser, U. F. Toward single-molecule proteomics. Science 374, 1443–1444 (2021).

    ADS  CAS  PubMed  Google Scholar 

  232. Wanunu, M. Back and forth with nanopore peptide sequencing. Nat. Biotechnol. 40, 172–173 (2022).

    CAS  PubMed  Google Scholar 

  233. Aggarwal, V. & Ha, T. Single-molecule fluorescence microscopy of native macromolecular complexes. Curr. Opin. Struct. Biol. 41, 225–232 (2016).

    CAS  PubMed  Google Scholar 

  234. Cohen, L. & Walt, D. R. Single-molecule arrays for protein and nucleic acid analysis. Annu. Rev. Anal. Chem. 10, 345–363 (2017).

    CAS  Google Scholar 

  235. Edman, P. A method for the determination of the amino acid sequence in peptides. Arch. Biochem. 22, 475–476 (1949).

    CAS  PubMed  Google Scholar 

  236. Swaminathan, J. et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1082 (2018).

    CAS  Google Scholar 

  237. Reed, B. D. et al. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. Science 378, 186–192 (2022).

    ADS  CAS  PubMed  Google Scholar 

  238. Kafader, J. O. et al. Measurement of individual ions sharply increases the resolution of Orbitrap mass spectra of proteins. Anal. Chem. 91, 2776–2783 (2019).

    CAS  PubMed  Google Scholar 

  239. Makarov, A. & Denisov, E. Dynamics of ions of intact proteins in the Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1486–1495 (2009).

    CAS  PubMed  Google Scholar 

  240. Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J. R. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012).

    CAS  PubMed  Google Scholar 

  241. Kafader, J. O. et al. Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes. Nat. Methods 17, 391–394 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Mock, A., Braun, M., Scholl, C., Fröhling, S. & Erkut, C. Transcriptome profiling for precision cancer medicine using shallow nanopore cDNA sequencing. Sci. Rep. 13, 2378 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  243. Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 622, 842–849 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 20, 363–374 (2023).

    CAS  PubMed  Google Scholar 

  245. Motone, K. & Nivala, J. Not if but when nanopore protein sequencing meets single-cell proteomics. Nat. Methods 20, 336–338 (2023).

    CAS  PubMed  Google Scholar 

  246. Matzinger, M., Müller, E., Dürnberger, G., Pichler, P. & Mechtler, K. Robust and easy-to-use one-pot workflow for label-free single-cell proteomics. Anal. Chem. 95, 4435–4445 (2023).

  247. Candia, J. et al. Assessment of variability in the SOMAscan assay. Sci. Rep. 7, 14248 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  248. Niu, M. et al. Droplet-based transcriptome profiling of individual synapses. Nat. Biotechnol. 41, 1332–1344 (2023).

    CAS  PubMed  Google Scholar 

  249. Mamanova, L. & Turner, D. J. Low-bias, strand-specific transcriptome Illumina sequencing by on-flowcell reverse transcription (FRT-seq). Nat. Protoc. 6, 1736–1747 (2011).

    CAS  PubMed  Google Scholar 

  250. Koch, C. et al. Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers. Nat. Nanotechnol. 18, 1483–1491 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  251. Liu, J. & Aksimentiev, A. Molecular determinants of current blockade produced by peptide transport through a nanopore. ACS Nanosci. https://doi.org/10.1021/acsnanoscienceau.3c00046 (2023).

  252. Mahendran, K. R. et al. A monodisperse transmembrane α-helical peptide barrel. Nat. Chem. 9, 411–419 (2017).

    CAS  PubMed  Google Scholar 

  253. Xu, C. et al. Computational design of transmembrane pores. Nature 585, 129–134 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  254. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  PubMed  Google Scholar 

  255. Caldwell, C. C. & Spies, M. Helicase SPRNTing through the nanopore. Proc. Natl Acad. Sci. USA 114, 11809–11811 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  256. Mardis, E. R. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 6, 287–303 (2013).

    CAS  Google Scholar 

  257. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Fuller, C. W. et al. The challenges of sequencing by synthesis. Nat. Biotechnol. 27, 1013–1023 (2009).

    CAS  PubMed  Google Scholar 

  259. Kandaswamy, V., Eugene, T. & Bernard, M. A. Nucleic acid sequencing methods and systems. PCT patent 2017/014762 A1 (2017).

  260. Meslier, V. et al. Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Sci. Data 9, 694 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Füllgrabe, J. et al. Simultaneous sequencing of genetic and epigenetic bases in DNA. Nat. Biotechnol. 41, 1457–1464 (2023).

    PubMed  PubMed Central  Google Scholar 

  262. Rohs, R. et al. The role of DNA shape in protein-DNA recognition. Nature 461, 1248–1253 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  263. Remaut, H., Jayasinghe, L. & Howorka, S. Mutant CsgG Pores. PCT patent 2016/034591 A3 (2016).

  264. Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344, 65–69 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  265. Schaus, T. E., Woo, S., Xuan, F., Chen, X. & Yin, P. A DNA nanoscope via auto-cycling proximity recording. Nat. Commun. 8, 696 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  266. Filius, M., Kim, S. H., Severins, I. & Joo, C. High-resolution single-molecule FRET via DNA eXchange (FRET X). Nano Lett. 21, 3295–3301 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  267. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Obradovic, A. et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 184, 2988–3005.e16 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Trzupek, D. et al. Discovery of CD80 and CD86 as recent activation markers on regulatory T cells by protein-RNA single-cell analysis. Genome Med. 12, 55 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 39, e102 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Howorka Group receives funding from the Human Frontiers Science Program (RGP0047/2020), the Engineering and Physical Sciences Research Council (EP/N009282/1 and EP/V02874X/1), the Wellcome Institutional Strategic Support Fund, the Moorfields Biomedical Research Centre and Oxford Nanopore Technologies plc. We thank J. Ciccone, M. Booth, and K. F. Au for critically reading the manuscript, J. Ciccone and A. Rottensteiner for editing the figures, and J. Ciccone for helping edit the text.

Author information

Authors and Affiliations

Authors

Contributions

A.D. and S.H. contributed to discussions and wrote the manuscript.

Corresponding authors

Correspondence to Adam Dorey or Stefan Howorka.

Ethics declarations

Competing interests

S.H. is named inventor on a patent on the CsgG nanopore which is licensed to Oxford Nanopore Technologies Ltd. S.H. and A.D. are named inventors on patents on DNA nanopores which are licensed to Oxford Nanopore Technologies Ltd.

Peer review

Peer review information

Nature Chemistry thanks Abdelghani Oukhaled and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorey, A., Howorka, S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat. Chem. 16, 314–334 (2024). https://doi.org/10.1038/s41557-023-01322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01322-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing