Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A catalytic process enables efficient and programmable access to precisely altered indole alkaloid scaffolds

Abstract

A compound’s overall contour impacts its ability to elicit biological response, rendering access to distinctly shaped molecules desirable. A natural product’s framework can be modified, but only if it is abundant and contains suitably modifiable functional groups. Here we introduce a programmable strategy for concise synthesis of precisely altered scaffolds of scarce bridged polycyclic alkaloids. Central to our approach is a scalable catalytic multi-component process that delivers diastereo- and enantiomerically enriched tertiary homoallylic alcohols bearing differentiable alkenyl moieties. We used one product to launch progressively divergent syntheses of a naturally occurring alkaloid and its precisely expanded, contracted and/or distorted framework analogues (average number of steps/scaffold of seven). In vitro testing showed that a skeleton expanded by one methylene in two regions is cytotoxic against four types of cancer cell line. Mechanistic and computational studies offer an account for several unanticipated selectivity trends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bridged polycyclic indole alkaloids, the foundational multi-component process and its applicability.
Fig. 2: Catalyst screening and the scope of the multi-component process.
Fig. 3: Diastereo- and enantioselective synthesis of the primary hub and some surprising observations along the way.
Fig. 4: Progressively divergent conversion of the primary hub to secondary and tertiary hubs.
Fig. 5: Synthesis of the NP and precisely altered scaffolds and in vitro testing.
Fig. 6: DFT studies offer insight regarding several unexpected selectivity trends.

Similar content being viewed by others

Data availability

All data in support of the findings of this study are available within the article and its Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2237819 (7b) and 1874716 (8). Source data are provided with this paper.

References

  1. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Grigalunas, M., Burhop, A., Christoforow, A. & Waldmann, H. Pseudo-natural products and natural product-inspired methods in chemical biology and drug discovery. Curr. Opin. Chem. Biol. 56, 111–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Huigens, R. W. III et al. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nat. Chem. 5, 195–202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  6. McLeod, M. C. et al. Probing chemical space with alkaloid-inspired libraries. Nat. Chem. 6, 133–140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fokas, D., Yu, L. & Baldino, C. M. Strategies for the synthesis of indole alkaloid-based screening libraries for drug discovery. Mol. Divers. 9, 81–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Shearer, J., Castro, J. L., Lawson, A. D. G., McCoss, M. & Taylor, R. D. Rings in clinical trials and drugs: present and future. J. Med. Chem. 65, 8699–8712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noguchi, Y. et al. Synthesis and stereochemical determination of an antiparasitic pseudo-aminal type monoterpene indole alkaloid. J. Nat. Med. 70, 302–317 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arens, H., Borbe, H. O., Ulbrich, B. & Stöckigt, J. Detection of pericine, a new CNS-active indole alkaloid from Picralima nitida cell suspension culture by opiate receptor binding studies. J. Med. Plant. Res. 46, 210–214 (1982).

    Article  CAS  Google Scholar 

  11. Bonjoch, J., Solé, D., GarcÍa-Rubio, S. & Bosch, J. A general synthetic entry to strychnos alkaloids of the curan type via a common 3a-(2-nitrophenyl)hexahydroindol-4-one intermediate. Total syntheses of (±)19,20-dihydroakuammicine, (±)-norfluorocurarine, (±)-echitamidine, and (±)-20-epilochneridine. J. Am. Chem. Soc. 119, 7230–7240 (1997).

    Article  CAS  Google Scholar 

  12. Michel, S., Tillequin, F. & Koch, M. Brafouédine et isobrafouédine: nouveux alcoïdes indoliques mineurs de strychnos dinklagei. J. Nat. Prod. 49, 452–455 (1986).

    Article  CAS  Google Scholar 

  13. Lima, J. A. et al. Geissoschizoline, a promising alkaloid for Alzheimer’s disease: inhibition of human cholinesterases, anti-inflammatory effects and molecular docking. Bioorg. Chem. 104, 104215 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Arita, T. et al. Discovery of conolidine derivative DS39201083 as a potent novel analgesic without mu opioid agonist activity. Bioorg. Med. Chem. Lett. 29, 1938–1942 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Jhoti, H., Williams, G., Rees, D. C. & Murray, C. W. The ‘rule of three’ for fragment-based drug discovery: where are we now? Nat. Rev. Drug Discov. 12, 644 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Hirose, T. et al. Structure determination and total synthesis of (+)‐16‐hydroxy‐16,22‐dihydroapparicine. Chem. Eur. J. 19, 10741–10750 (2013).

  17. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Galloway, W. R. J. D., Isidro-Llobet, A. & Spring, D. R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 1, 80 (2010).

    Article  PubMed  ADS  Google Scholar 

  19. Kim, J., Kim, H. & Park, S. B. Privileged structures: efficient chemical ‘navigators’ toward unexplored biologically relevant chemical spaces. J. Am. Chem. Soc. 136, 14629–14638 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Wilson, R. M. & Danishefsky, S. J. Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. J. Org. Chem. 71, 8329–8351 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Castro, M., Zimmermann, S., Sankar, M. G. & Kumar, K. Scaffold diversity synthesis and its application in probe and drug discovery. Angew. Chem. Int. Ed. 55, 7586–7605 (2016).

    Article  CAS  Google Scholar 

  22. Lusi, R. F., Perea, M. A. & Sarpong, R. C–C bond cleavage of α-pinene derivatives prepared from carvone as a general strategy for complex molecule synthesis. Acc. Chem. Res. 55, 746–758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y.-L. & Lin, X.-T. Recent advances in catalytic asymmetric synthesis of tertiary alcohols via nucleophilic addition to ketones. Adv. Synth. Catal. 361, 876–918 (2019).

    Article  CAS  Google Scholar 

  24. Meng, F., Jang, H., Jung, B. & Hoveyda, A. H. Cu-catalyzed chemoselective preparation of 2-(pinacolato)boron-substituted allylcopper complexes and their in situ site-, diastereo- and enantioselective additions to aldehydes and ketones. Angew. Chem. Int. Ed. 52, 5046–5051 (2013).

    Article  CAS  Google Scholar 

  25. Tsai, E. Y., Liu, R. Y., Yang, Y. & Buchwald, S. L. A regio- and enantioselective CuH-catalyzed ketone allylation with terminal allenes. J. Am. Chem. Soc. 140, 2007–2011 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, Y., Perry, I. B., Lu, G., Liu, P. & Buchwald, S. L. Copper-catalyzed asymmetric addition of olefin-derived nucleophiles to ketones. Science 353, 144–150 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Li, C. et al. CuH-catalyzed enantioselective ketone allylation with 1,3-dienes: scope, mechanism, and applications. J. Am. Chem. Soc. 141, 5062–5070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feng, J.-J., Xu, Y. & Oestreich, M. Ligand-controlled diastereodivergent, enantio- and regioselective copper-catalyzed hydroxyalkylboration of 1,3-dienes with ketones. Chem. Sci. 10, 9679–9683 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu, B. et al. Copper-catalyzed asymmetric reductive allylation of ketones with 1,3-dienes. Org. Lett. 21, 3576–3580 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, Y., Torker, S., Li, X., del Pozo, J. & Hoveyda, A. H. Racemic vinylallenes in catalytic enantioselective multicomponent processes: rapid generation of complexity through 1,6‐conjugate additions. Angew. Chem. Int. Ed. 58, 2685–2691 (2019).

    Article  CAS  Google Scholar 

  31. Matteson, D. S. & Sadhu, K. M. Boronic ester homologation with 99% chiral selectivity and its use in syntheses of the insect pheromones (3S,4S)-4-methyl-3-heptanol and exo-brevicomin. J. Am. Chem. Soc. 105, 2077–2078 (1983).

    Article  CAS  Google Scholar 

  32. Hoveyda, A. H., Hird, A. W. & Kacprzynski, M. A. Small peptides as ligands for catalytic asymmetric alkylations of olefins. Rational design of catalysts or of searches that lead to them? Chem. Commun. 21, 1779–1785 (2004).

    Article  Google Scholar 

  33. Blakemore, P. R. & Burge, M. S. Iterative stereospecific reagent-controlled homologation of pinacol boronates by enantioenriched α-chloroalkyllithium reagents. J. Am. Chem. Soc. 129, 3068–3069 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Strom, A. E. & Hartwig, J. F. One-pot anti-Markovnikov hydroamination of unactivated alkenes by hydrozirconation and amination. J. Org. Chem. 78, 8909–8914 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bernoud, E. et al. Recent advances in metal free-and late transition metal-catalysed hydroamination of unactivated alkenes. Catal. Sci. Technol. 5, 2017–2037 (2015).

    Article  CAS  Google Scholar 

  36. Huang, L. et al. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 115, 2596–2697 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Takaya, H., Yamakawa, M. & Mashima, K. Synthesis and characterization of 2-[di(cyclopentadienyl)zircona]-1-oxacyclopentanes. X-ray crystal structure of [(η-C5H5)2ZrOCH2CH2CHMe]2. J. Chem. Soc. Chem. Commun. 1283–1284 (1983).

  38. Liu, X. & Ready, J. M. Directed hydrozirconation of homopropargylic alcohols. Tetrahedron 64, 6955–6960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gritsch, P. J., Leitner, C., Pfaffenbach, M. & Gaich, T. The Witkop cyclization: a photoinduced C–H activation of the indole system. Angew. Chem. Int. Ed. 53, 1208–1217 (2014).

    Article  CAS  Google Scholar 

  40. Joule, J. A. et al. Alkaloid studies. Part XLVIII. The structure of apparicine, a novel aspidosperma alkaloid. J. Chem. Soc. 87, 4773–4780 (1965).

    Article  Google Scholar 

  41. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Ghanbarian, M., Afgar, A., Yadegarazari, R., Najafi, R. & Teimoori-Tolabi, L. Through oxaliplatin resistance induction in colorectal cancer cells, increasing ABCB1 level accompanies decreasing level of miR-302c-5p, miR-3664-5p and miR-129-5p. Biomed. Pharmacol. 108, 1070–1080 (2018).

    Article  CAS  Google Scholar 

  43. Kobayashi, J. et al. Subincanadines A–C, novel quaternary indole alkaloids from Aspidosperma subincanum. J. Org. Chem. 67, 6449–6455 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Fujii, A. et al. Experimental and theoretical determination of the accurate CH/π interaction energies in benzene–alkane clusters: correlation between interaction energy and polarizability. Phys. Chem. Chem. Phys. 13, 14131–14141 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry—reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274–12296 (2015).

    Article  CAS  Google Scholar 

  46. Burns et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Ji, N.-Y. et al. Diterpenes, sesquiterpenes, and a C15-acetogenin from the marine red alga Laurencia mariannenins. J. Nat. Prod. 70, 1901–1905 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, W.-H., Williams, I. D. & Che, C.-T. Chabrolols A, B, and C, three new norditerpenes from the soft coral Nephthea charbroli. Tetrahedron Lett. 42, 4681–4685 (2001).

    Article  CAS  Google Scholar 

  49. Sin, N. et al. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl Acad. Sci. USA 94, 6099–6103 (1997).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Lu, J., Chong, C. R., Hu, X. & Liu, J. O. Fumarranol, a rearranged fumagillin analogue that inhibits angiogenesis in vivo. J. Med. Chem. 49, 5645–5648 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The methodological aspects of this work were funded by the NIH (grant R35 GM-130395 to A.H.H.). Support for applications to synthesis of NP and the corresponding analogues was provided by the CNRS, the ANR (project PRACTACAL to A.H.H.), the Jean-Marie Lehn Foundation for Chemistry Research (University of Strasbourg, to A.H.H.) and the Circle Gutenberg Foundation (2020 Chair for A.H.H.). Additional support was provided by the University of Illinois (for P.J.H.) and the NIH (grant R35 GM-128779 to P.L.). We thank the Shanghai Institute of Organic Chemistry and Solvay, S.A. for a postdoctoral and a predoctoral fellowship to Y.H. and X.L., respectively. In vitro testing was performed at the University of Illinois, Urbana-Champain. DFT and PMI studies were carried out at the Center for Research Computing at the University of Pittsburgh, Bridges 2 supercomputer at the San Diego Supercomputer Center through allocation TG-CHE140139 from the Advanced Cyberinfrastructure Ecosystem: Services and Support (ACCESS) programme, funded by NSF grants. We are grateful to F. Romiti, M. Formica, S. Ng, S. Xu and A. Nikbakht for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.H.H., X.L. and Y.H. designed and developed the catalytic multi-component method and prepared the natural products and skeletal analogues. P.J.H., E.J.T. and A.J.S. performed the in vitro testing. P.L. and B.K.M. designed and performed the DFT studies. A.H.H. conceived the project, directed the investigations and wrote the paper, and the other authors provided editorial advice.

Corresponding authors

Correspondence to Paul J. Hergenrother, Peng Liu or Amir H. Hoveyda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Kevin Kou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Tables 1–8.

Reporting Summary

Supplementary Data 1

Crystallographic data for compound 7b; CCDC reference 2237819.

Supplementary Data 2

Crystallographic data for compound 7b; CCDC reference 1874716.

Supplementary Data 3

The xyz coordinates of computed structures.

Source data

Source Data Fig. 5

Statistical source data for Fig. 5f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, X., Mai, B.K. et al. A catalytic process enables efficient and programmable access to precisely altered indole alkaloid scaffolds. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01455-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing