Focus |

Focus on neurodegenerative diseases

Nature Neuroscience presents a collection of Reviews on recent advances in neurodegenerative disease, highlighting shared mechanisms across diseases and the gaps in our knowledge that still need to be addressed.

Editorial

Reviews

Adequate blood supply and vascular integrity are key to normal brain functioning. Cerebral blood flow and blood–brain barrier disruption contribute to Alzheimer’s disease and other neurodegenerative disorders as reviewed in humans and animal models.

Review Article | | Nature Neuroscience

Neurodegenerative diseases impact specific cell populations within the brain. However, not all cells within the population are impacted, a phenomenon called selective cellular vulnerability. The molecular basis of this vulnerability is discussed.

Review Article | | Nature Neuroscience

Microglia are the sentinels, housekeepers, and defenders of the brain. In this review we consider the immune checkpoints that control microglial functions and discuss how their imbalance and subsequent neuroinflammation leads to neurodegeneration.

Review Article | | Nature Neuroscience

The authors review the current state of rodent models for AD, PD, FTD, and ALS. Limitations and utility of current models, issues regarding translatability, and future directions for developing animal models of these human disorders are discussed.

Review Article | | Nature Neuroscience

From the archive

Apicco and colleagues show that reducing TIA1 inhibits tau-mediated neurodegeneration and improves survival in a mouse model of tauopathy. This rescue occurs with a transition in tau aggregation from oligomeric to fibrillar forms of tau. These findings suggest a key role for RNA binding proteins in the pathophysiology of tau.

Article | | Nature Neuroscience

The precise underpinnings of Parkinson's disease and other disorders associated with the accumulation of α-synuclein are unclear. This study shows that PrPC mediates α-synuclein-associated synaptic dysfunction and memory deficits. Blocking specific events in receptor biology rescued cognitive deficits in mice, suggesting new possibilities for intervention in synucleinopathies.

Article | | Nature Neuroscience

Dopamine has long been thought to contribute to neurodegeneration in Parkinson's disease. The authors show that dopamine-induced neuron death in the substantia nigra is dependent on α-synuclein and coincides with increased levels of α-synuclein oligomers. The results suggest a synergistic interaction between dopamine and α-synuclein that underlies neuronal vulnerability in disease.

Article | | Nature Neuroscience

The mechanisms underpinning neuronal death in Alzheimer's disease (AD) remain unclear. Caccamo and colleagues show that necroptosis contributes to neurodegeneration in AD. Blocking necroptosis reduced neuronal loss in a mouse model of AD, suggesting that necroptosis might be a therapeutic target in AD.

Article | | Nature Neuroscience

An expanded repetition of a DNA sequence within the C9orf72 gene is the most common genetic cause for motor neuron disease and frontotemporal dementia. In this study, the authors show that this expansion causes increased genomic breaks and reduces the cell's ability to repair the breaks, ultimately leading to neuronal cell death.

Article | | Nature Neuroscience

The authors identified a protective genetic allele associated with lower PU.1 (SPI1) expression in myeloid cells by conducting a genome-wide scan of Alzheimer's disease (AD). PU.1 binds the promoters of AD-associated genes (e.g., CD33, MS4A4A & MS4A6A, TYROBP) and modulates their expression, suggesting it may reduce AD risk by regulating myeloid cell gene expression.

Article | | Nature Neuroscience

The authors show that in a mouse model of spinal muscular atrophy (SMA), there is a reduction in sensory synaptic drive that leads to motor neuron dysfunction and motor behavior impairments. SMA motor neurons showed a lower surface expression of Kv2.1 potassium channels and reduced spiking ability. Increasing neuronal activity pharmacologically led to the normalization of Kv2.1 surface expression and an improvement in motor function.

Article | | Nature Neuroscience

The Huntington's disease (HD) induced pluripotent stem cell (iPSC) consortium describe the combined use of differentiated patient-derived iPSCs and systems biology to discover underlying mechanisms in HD. They identify neurodevelopmental deficits in HD cells that can be corrected in cells and in vivo with a small molecule.

Article | | Nature Neuroscience

The authors used knockout mice to demonstrate the normal function of the protein α-synuclein, which has a central role in Parkinson's and other neurodegenerative diseases. The presynaptic protein promoted dilation of the exocytotic fusion pore, and mutations that cause Parkinson's disease specifically impaired this normal function.

Article | | Nature Neuroscience

In this Review, a collaboration of leading experts in amyotrophic lateral sclerosis (ALS) research present the state of the field regarding the use patient-derived induced pluripotent stem cells to generate motor neurons in vitro. Motor neuron characterization, including transcriptomics, molecular markers, neuron function and electrophysiology, are discussed in the context of maturation and disease.

Review Article | | Nature Neuroscience

In this Perspective the authors provide a comparison of recent neurophysiological findings on the pathophysiology of three major movement disorders: Huntington's disease, l-DOPA-induced dyskinesia and dystonia. Both clinical and preclinical studies show that these hyperkinetic disorders share mechanisms underlying synaptic scaling and synaptic plasticity alterations in the basal ganglia–thalamo-cortical network.

Perspective | | Nature Neuroscience

Zhang et al. show that the poly(GA) proteins produced in patients with C9ORF72 repeat expansions cause neurodegeneration and behavioral abnormalities when expressed in mice. The emergence of these phenotypes requires poly(GA) aggregation, and poly(GA) inclusions sequester HR23 proteins involved in proteasomal degradation, as well as proteins involved in nucleocytoplasmic transport.

Article | | Nature Neuroscience