Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 27 Issue 3, March 2024

Mapping circuits for DBS

Within the enigmatic depths of an aquatic universe, divers use flashlights to reveal the hidden contours of an uncharted seabed that teems with wondrous vegetation. In an analogous exploration, Hollunder et al. describe how invasive brain stimulation delivered to deep-seated brain nuclei may act as a beacon. Using deep brain stimulation (DBS), they show that the frontal cortex can be segregated into distinct circuits that become dysfunctional in four different brain disorders. Their topographical map may shed light on more-precise brain-circuit therapeutics.

See Hollunder, et al.

Image and cover design: Barbara Hollunder. Cover Design: Debbie Maizels.

Q&A

  • As Nature Neuroscience celebrates its 25th anniversary, we are having conversations with both established leaders in the field and those earlier in their careers to discuss how the field has evolved and where it is heading. This month we are talking to Nancy Ip, Morningside Professor of Life Science and president of the Hong Kong University of Science and Technology. We discussed her path from academia to industry and back, her experiences as a working mother and how she has helped scientific research in Hong Kong to flourish.

    • Shari Wiseman
    Q&A

    Advertisement

Top of page ⤴

Research Highlights

Top of page ⤴

News & Views

  • Muller et al. demonstrate that reward signals recorded from the frontal cortex of nonhuman primates exhibit a population-based scheme for learning probability distributions over reward values. This study provides evidence that neural signals outside of the midbrain reflect the principles of distributional reinforcement-learning theory.

    • Tao Hong
    • William R. Stauffer
    News & Views
  • Both caloric restriction and obesity affect autoimmune diseases. The activation of brainstem neurons in the ventrolateral medulla (VLM) with fasting suppresses experimental autoimmune diseases. Stimulation of VLM neurons alters T cell traffic by redistributing immune cells to bone marrow and reduces inflammatory cytokine production, thus providing therapy of experimental autoimmunity.

    • Noga Or-Geva
    • Lawrence Steinman
    News & Views
Top of page ⤴

Research Briefings

  • Long COVID has remained an on-going public health issue in the years following the global pandemic. Here, we report blood–brain barrier disruption in patients with acute SARS-CoV-2 infection and brain fog, and patients presenting with long COVID, brain fog and cognitive decline, compared to those with long COVID without any neurological symptoms.

    Research Briefing
  • This research elucidates that oligodendrocytes detect and respond to fast axonal spiking through K+ signaling, and that Kir4.1 channel activation has a pivotal role. This activity-driven interaction regulates axonal metabolic support by oligodendrocytes and influences lactate delivery and glucose metabolism in axons, which is essential for sustaining axonal health.

    Research Briefing
  • A widespread group of cerebellar projections form monosynaptic excitatory synapses with neurons throughout the substantia nigra pars compacta (SNc). These projections contain information associated with movement and reward and can rapidly increase SNc neuron activity, and thereby basal ganglia dopamine levels, which contribute to movement initiation, vigor and reward processing.

    Research Briefing
  • Brain connections modulated by 534 deep-brain-stimulation electrodes revealed a gradient of circuits involved in dystonia, Parkinson’s disease, Tourette’s syndrome and obsessive-compulsive disorder. Together, these circuits begin to describe the human ‘dysfunctome’, a library of dysfunctional circuits that lead to various brain disorders.

    Research Briefing
Top of page ⤴

Brief Communications

  • Muller et al. show that some neurons in the cortex learn faster from better-than-expected outcomes compared to worse-than-expected ones; others do the converse, resulting in simultaneous optimism and pessimism, as predicted by distributional reinforcement learning.

    • Timothy H. Muller
    • James L. Butler
    • Steven W. Kennerley
    Brief Communication Open Access
Top of page ⤴

Articles

Top of page ⤴

Search

Quick links