Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereospecific α-(hetero)arylation of sulfoximines and sulfonimidamides

Abstract

The occurrence of sulfoximines and sulfonimidoyl groups in biologically active molecules within pharmaceuticals and agrochemicals has notably increased in the past decade. This increase has prompted a wave of discovery of methods to install the S(VI) functionality into complex organic molecules. Traditional synthetic methods to form α-substituted sulfonimidoyl motifs rely on S–C bond disconnections and typically require control of the stereogenic S-centre or late-stage modification at sulfur, and comprise multistep routes. Here, we report the development of a stereospecific, modular SNAr approach for the introduction of sulfonimidoyl functional groups into heterocyclic cores. This strategy has been demonstrated across 85 examples, in good to excellent yield, of complex and diverse heterocycles. Sulfoximines, sulfonimidamides and sulfondiimines are all compatible nucleophiles in the SNAr reaction and, hence, the methodology was applied to the synthesis of four sulfoximine-containing pharmaceuticals. Of these synthetic applications, most notably ceralasertib, an ATR inhibitor currently in clinical trials, was synthesized in an eight-step procedure on a gram scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Importance, value and accessibility of sulfonimidoyl groups.
Fig. 2: Synthetic routes to access S(VI) nucleophiles.
Fig. 3: Enantiospecific synthesis of BAY 1251152.
Fig. 4: Formal syntheses of pharmaceutical intermediates.
Fig. 5: Target- and diversity-oriented syntheses of ceralasertib.

Similar content being viewed by others

Data availability

The experimental data as well as the characterization data for all the compounds prepared during these studies are provided in the Supplementary Information. Crystallographic data are available from the Cambridge Crystallographic Data Centre with the following codes: 52 (CCDC 2087123), 108 (CCDC 2087121), 112 (CCDC 2087124) and 138 (CCDC 2087122).

References

  1. Ilardi, E. A., Vitaku, E. & Njardarson, J. T. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 57, 2832–2842 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, C., Rakesh, K. P., Ravidar, L., Fang, W.-Y. & Qin, H.-L. Pharmaceutical and medicinal significance of sulfur (S(VI))-containing motifs for drug discovery: a critical review. Eur. J. Med. Chem. 162, 679–734 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Tang, K.-X. et al. Transition metal-catalyzed C–H bond functionalizations by use of sulfur-containing directing groups. Adv. Synth. Catal. 361, 26–38 (2019).

    Article  CAS  Google Scholar 

  4. Wang, J. et al. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nat. Mater. 20, 665–673 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Scott, K. A. & Njardarson, J. T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. 376, 5 (2018).

    Article  Google Scholar 

  6. Mäder, P. & Kattner, L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. J. Med. Chem. 63, 14243–14275 (2020).

    Article  PubMed  Google Scholar 

  7. Lücking, U. Sulfoximines: a neglected opportunity in medicinal chemistry. Angew. Chem. Int. Ed. 52, 9399–9408 (2013).

    Article  Google Scholar 

  8. Sirvent, J. A. & Lücking, U. Novel pieces for the emerging picture of sulfoximines in drug discovery: synthesis and evaluation of sulfoximine analogues of marketed drugs and advanced clinical candidates. ChemMedChem 12, 487–501 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lücking, U. Neglected sulfur(VI) pharmacophores in drug discovery: exploration of novel chemical space by the interplay of drug design and method development. Org. Chem. Front. 6, 1319–1324 (2019).

    Article  Google Scholar 

  10. Devendar, P. & Yang, G. F. Sulfur-containing agrochemicals. Top. Curr. Chem. 375, 82 (2017).

    Article  Google Scholar 

  11. Zasukha, S. V. et al. Sulfonimidamides and imidosulfuric diamides: compounds from an underexplored part of biologically relevant chemical space. Chem. Eur. J. 25, 6928–6940 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Chinthakindi, P. K. et al. Sulfonimidamides in medicinal and agricultural chemistry. Angew. Chem. Int. Ed. 56, 4100–4109 (2017).

    Article  CAS  Google Scholar 

  13. Foote, K. M. et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. J. Med. Chem. 61, 9889–9907 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Lücking, U. et al. Preparation of modified macrocyclic compounds for the treatment of diseases. Patent WO 2017/060167 A1 (2017)

  15. Lücking, U. et al. Preparation of macrocyclic sulfondiimine compounds as CDK9 inhibitor for treatment of hyperproliferative disorder, viral infection, and cardiovascular diseases. Patent WO 2017/055196 A1 (2017)

  16. Zhu, Y. et al. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J. Agric. Food Chem. 59, 2950–2957 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Johnson, T., Vairagoundar, R. & Ewin, R. A. Preparation of novel phenicol derivatives useful as antibacterial agents. Patent WO 2014/172443 A1 (2014)

  18. Lücking, U. et al. Changing for the better: discovery of the highly potent and selective CDK9 inhibitor VIP152 suitable for once weekly intravenous dosing for the treatment of cancer. J. Med. Chem. 64, 11651–11674 (2021).

    Article  PubMed  Google Scholar 

  19. Frings, M., Bolm, C., Blum, A. & Gnamm, C. Sulfoximines from a medicinal chemist’s perspective: physicochemical and in vitro parameters relevant for drug discovery. Eur. J. Med. Chem. 126, 225–245 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Lücking, U. et al. The lab oddity prevails: discovery of pan-CDK inhibitor (R)-S-cyclopropyl-S-(4-{[4-{[(1R,2R)-2-hydroxy-1-methylpropyl]oxy}-5-(trifluoromethyl)pyrimidin-2-yl]amino}phenyl)sulfoximide (BAY 1000394) for the treatment of cancer. Chem. Med. Chem. 8, 1067–1085 (2013).

    Article  PubMed  Google Scholar 

  21. Izzo, F. et al. Exploration of novel chemical space: synthesis and in vitro evaluation of N-functionalized tertiary sulfonimidamides. Chem. Eur. J. 24, 9295–9304 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Clinical Trials Using ATR Kinase Inhibitor AZD6738 (National Cancer Institute, accessed 26 May 2021); https://www.cancer.gov/about-cancer/treatment/clinical-trials/intervention/ceralasertib?redirect=true

  23. Lücking, U. et al. Preparation of novel PTEFB inhibiting macrocyclic compounds. Patent WO 2018/177899 A1 (2018)

  24. Walker, D. P. et al. Sulfoximine-substituted trifluoromethylpyrimidine analogs as inhibitors of proline-rich tyrosine kinase 2 (PYK2) show reduced hERG activity. Bioorg. Med. Chem. Lett. 19, 3253–3258 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Mc Bride, C. et al. Preparation of sulfonimidamide compounds as inhibitors of interleukin-1 activity. Patent WO 2020/018975 A1 (2020)

  26. Chowdhury, S. et al. Preparation of substituted benzamides as sodium channel inhibitors and therapeutic uses thereof. Patent WO 2017/172802 A1 (2017)

  27. Bartels, B. et al. Preparation of pyridyl-triazabicycles having BACE1 inhibitory activity. Patent WO 2016/012422 A1 (2016)

  28. Katz, J., Roush, W., Seidel, H. M., Shen, D.-M. & Venkatraman, S. Sulfonimidamide compounds and compositions for treating conditions associated with NLRP activity. Patent WO 2020/154499 A1 (2020)

  29. Ouvry, G. et al. Sulfoximines as potent RORγ inverse agonists. Bioorg. Med. Chem. Lett. 28, 1269–1273 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Loso, M. R. et al. SAR studies directed toward the pyridine moiety of the sap-feeding insecticide sulfoxaflor (Isoclast active). Bioorg. Med. Chem. 24, 378–382 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Okamura, H. & Bolm, C. Rhodium-catalyzed imination of sulfoxides and sulfides: efficient preparation of N-unsubstituted sulfoximines and sulfilimines. Org. Lett. 6, 1305–1307 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Correa, A. & Bolm, C. Ligand-free copper-catalyzed N-arylation of nitrogen nucleophiles. Adv. Synth. Catal. 349, 2673–2676 (2007).

    Article  CAS  Google Scholar 

  33. Cheng, Y. & Bolm, C. Regioselective syntheses of 1,2-benzothiazines by rhodium-catalyzed annulation reactions. Angew. Chem. Int. Ed. 54, 12349–12352 (2015).

    Article  CAS  Google Scholar 

  34. Zenzola, M., Doran, R., Luisi, R. & Bull, J. A. Synthesis of sulfoximine carbamates by rhodium-catalyzed nitrene transfer of carbamates to sulfoxides. J. Org. Chem. 80, 6391–6399 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Zenzola, M., Doran, R., Degennaro, L., Luisi, R. & Bull, J. A. Transfer of electrophilic NH using convenient sources of ammonia: direct synthesis of NH sulfoximines from sulfoxides. Angew. Chem., Int. Ed. 55, 7203–7207 (2016).

    Article  CAS  Google Scholar 

  36. Tota, A. et al. Synthesis of NH-sulfoximines from sulfides by chemoselective one-pot N- and O-transfers. Chem. Commun. 53, 348–351 (2017).

    Article  CAS  Google Scholar 

  37. Johnson, C. R. Utilization of sulfoximines and derivatives as reagents for organic synthesis. Acc. Chem. Res. 6, 341–347 (1973).

    Article  CAS  Google Scholar 

  38. Sirvent, J. A., Bierer, D., Webster, R. & Lücking, U. Palladium-catalyzed direct α-arylation of p-methoxybenzyl-protected S,S-dimethylsulfoximine. Synthesis 49, 1024–1036 (2017).

    CAS  Google Scholar 

  39. Greed, S. et al. Synthesis of highly enantioenriched sulfonimidoyl fluorides and sulfonimidamides by stereospecific sulfur–fluorine exchange (SuFEx) reaction. Chem. Eur. J. 26, 12533–12538 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Izzo, F., Schaefer, M., Stockman, R. & Lücking, U. A new, practical one-Pot synthesis of unprotected sulfonimidamides by transfer of electrophilic NH to sulfinamides. Chem. Eur. J. 23, 15189–15193 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Aota, Y., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral sulfoximines through the S-alkylation of sulfinamides. Angew. Chem. Int. Ed. 58, 17661–17665 (2019).

    Article  CAS  Google Scholar 

  42. Aota, Y., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral sulfoximines via the S-arylation of sulfinamides. J. Am. Chem. Soc. 141, 19263–19268 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Gao, B., Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. SuFEx chemistry of thionyl tetrafluoride (SOF4) with organolithium nucleophiles: synthesis of sulfonimidoyl fluorides, sulfoximines, sulfonimidamides, and sulfonimidates. Angew. Chem. Int. Ed. 57, 1939–1943 (2018).

    Article  CAS  Google Scholar 

  44. Zheng, Q. et al. SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc. Natl Acad. Sci. USA 116, 18808–18814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kitamura, S. et al. Sulfur(VI) fluoride exchange (SuFEx)-enabled high-throughput medicinal chemistry. J. Am. Chem. Soc. 142, 10899–10904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davies, T. Q., Hall, A. & Willis, M. C. One-pot, three-component sulfonimidamide synthesis exploiting the sulfinylamine reagent N-sulfinyltritylamine, TrNSO. Angew. Chem. Int. Ed. 56, 14937–14941 (2017).

    Article  CAS  Google Scholar 

  47. Zhang, Z.-X., Davies, T. Q. & Willis, M. C. Modular sulfondiimine synthesis using a stable sulfinylamine reagent. J. Am. Chem. Soc. 141, 13022–13027 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davies, T. Q. et al. Harnessing sulfinyl nitrenes: a unified one-pot synthesis of sulfoximines and sulfonimidamides. J. Am. Chem. Soc. 142, 15445–15453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pyne, S. G., Dong, Z., Skelton, B. W. & White, A. H. Cyclopropanation reactions of enones with lithiated sulfoximines: application to the asymmetric synthesis of chiral cyclopropanes. J. Org. Chem. 62, 2337–2343 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, W., Wang, F. & Hu, J. N-Tosyl-S-difluoromethyl-S-phenylsulfoximine: a new difluoromethylation reagent for S-, N-, and C-nucleophiles. Org. Lett. 11, 2109–2112 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Shen, X., Liu, Q., Zhang, W. & Hu, J. Stereoselective synthesis of (sulfonimidoyl)cyclopropanes with (R)-PhSO(NTs)CH2Cl and α,β-unsaturated Weinreb amides: tuning the of selectivity between C–Cl and C–S bond cleavage. Eur. J. Org. Chem. 2016, 906–909 (2016).

    Article  CAS  Google Scholar 

  52. Cho, G. Y. & Bolm, C. Palladium-catalyzed α-arylation of sulfoximines. Org. Lett. 7, 1351–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Leftheris, K. et al. Substituted 5-, 6- and 7-membered heterocycles as 11β-HSD1 inhibitors and their preparation, medicaments containing such compounds, and their use. Patent WO 2011/159760 A1 (2011)

  54. Liu, Y., Xia, Q. & Fang, L. Design and synthesis of alkyl substituted pyridino[2,3-D]pyrimidine compounds as PI3Kα/mTOR dual inhibitors with improved pharmacokinetic properties and potent in vivo antitumor activity. Bioorg. Med. Chem. 26, 3992–4000 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Blades, K. et al. Expedient synthesis of biologically important sulfonylmethyl pyrimidines. Tetrahedron Lett. 55, 3851–3855 (2014).

    Article  CAS  Google Scholar 

  56. Haake, M. Ein neues verfahren zur darstellung von S,S-dialkylschwefeldiimiden. Tetrahedron Lett. 11, 4449–4450 (1970).

    Article  Google Scholar 

  57. Park, S. J. et al. N-Cyano sulfoximines: COX inhibition, anticancer activity, cellular toxicity, and mutagenicity. ChemMedChem 8, 217–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Murray, J. M. et al. Potent and highly selective benzimidazole inhibitors of PI3-kinase delta. J. Med. Chem. 55, 7686–7695 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Kang, D. et al. Structure-based optimization of thiophene[3,2-d]pyrimidine derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors with improved potency against resistance-associated variants. J. Med. Chem. 60, 4424–4443 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Goundry, W. R. F. et al. Development and scale-up of a route to ATR inhibitor AZD6738. Org. Process Res. Dev. 23, 1333–1342 (2019).

    Article  CAS  Google Scholar 

  61. Graham, M. A. et al. Development and scale-up of an improved manufacturing route to the ATR Inhibitor ceralasertib. Org. Process Res. Dev. 25, 43–56 (2021).

    Article  CAS  Google Scholar 

  62. Graham, M. A. et al. Development and proof of concept for a large-scale photoredox additive-free Minisci reaction. Org. Process Res. Dev. 25, 57–67 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Institutes of Health (R35-GM142577, J.M.L.) and the Florida Department of Health (Bankhead-Coley #9BC09, J.M.L.) for support of this research. This work has also been supported in part by the Chemical Biology Core Facility at the H. Lee Moffitt Cancer Center & Research Institute, an NCI designated Comprehensive Cancer Center (P30-CA076292). We thank H. Lawrence and S. Yun for NMR and HRMS support, and C. Shan and Q. Tang for assistance with X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

Z.P.S. and T.S. performed the experiments; Z.P.S. and J.M.L. designed the project and wrote the paper; L.W. performed the X-ray crystallographic analysis.

Corresponding author

Correspondence to Justin M. Lopchuk.

Ethics declarations

Competing interests

A provisional patent application naming J.M.L., Z.P.S. and T.S. as inventors has been filed by the H. Lee Moffitt Cancer Center & Research Institute, which covers the synthetic methods for the α-(hetero)arylation of sulfonimidoyl functional groups. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Mark Graham, Ulrich Lücking and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Schemes 1–7, Tables 1–5, procedures and troubleshooting guides.

Supplementary Data 1

Crystallographic data for compound 52.

Supplementary Data 2

Crystallographic data for compound 108.

Supplementary Data 3

Crystallographic data for compound 112.

Supplementary Data 4

Crystallographic data for compound 138.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shultz, Z.P., Scattolin, T., Wojtas, L. et al. Stereospecific α-(hetero)arylation of sulfoximines and sulfonimidamides. Nat Synth 1, 170–179 (2022). https://doi.org/10.1038/s44160-021-00011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00011-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing