Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amino-oxetanes as amide isosteres by an alternative defluorosulfonylative coupling of sulfonyl fluorides

Abstract

Bioisosteres provide valuable design elements that medicinal chemists can use to adjust the structural and pharmacokinetic characteristics of bioactive compounds towards viable drug candidates. Aryl oxetane amines offer exciting potential as bioisosteres for benzamides—extremely common pharmacophores—but are rarely examined due to the lack of available synthetic methods. Here we describe a class of reactions for sulfonyl fluorides to form amino-oxetanes by an alternative pathway to the established SuFEx (sulfonyl–fluoride exchange) click reactivity. A defluorosulfonylation forms planar oxetane carbocations simply on warming. This disconnection, comparable to a typical amidation, will allow the application of vast existing amine libraries. The reaction is tolerant to a wide range of polar functionalities and is suitable for array formats. Ten oxetane analogues of bioactive benzamides and marketed drugs are prepared. Kinetic and computational studies support the formation of an oxetane carbocation as the rate-determining step, followed by a chemoselective nucleophile coupling step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defluorosulfonylative coupling of oxetane sulfonyl fluorides with amines.
Fig. 2: Synthesis and reactivity of OSFs.
Fig. 3: Reaction scope on varying the OSF and application towards the synthesis of analogues of benzamide-containing drugs.
Fig. 4: Kinetic and computational analysis of the defluorosulfonylative oxetane amination.

Similar content being viewed by others

Data availability

The data supporting the findings of this work are provided in the Supplementary Information. Metrical parameters for the structure of amino-oxetanes 30 and 38, oxetane sulfonate esters 49, 89 and 93, oxetane ether 50 and sulfonyl fluorides 1, 54, 56 and 92 are available free of charge from the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/data_request/cif) under reference nos. CCDC 2094791 (1), CCDC 2049639 (30), CCDC 2049640 (38), CCDC 2094792 (49), CCDC 2094793 (50), CCDC 2049754 (54), CCDC 2094794 (56), CCDC 2094795 (89), CCDC 2094871 (92) and CCDC 2094796 (93). Raw and processed characterization data for all novel compounds as well as compiled computational data are available at the Imperial College London Research Data Repository72.

References

  1. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  5. Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 113, 4905–4979 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) Fluoride Exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).

    Article  CAS  Google Scholar 

  7. Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Ertl, P., Altmann, E. & McKenna, J. M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem. 63, 8408–8418 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, S., Jia, Q. & Zhang, Z. Applications of amide isosteres in medicinal chemistry. Bioorg. Med. Chem. Lett. 29, 2535–2550 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Kumari, S., Carmona, A. V., Tiwari, A. K. & Trippier, P. C. Amide bond bioisosteres: strategies, synthesis and successes. J. Med. Chem. 63, 12290–12358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sabatini, M. T., Boulton, L. T., Sneddon, H. F. & Sheppard, T. D. A green chemistry perspective on catalytic amide bond formation. Nat. Catal. 2, 10–17 (2019).

    Article  CAS  Google Scholar 

  13. Burkhard, J. A., Wuitschik, G., Rogers-Evans, M., Müller, K. & Carreira, E. M. Oxetanes as versatile elements in drug discovery and synthesis. Angew. Chem. Int. Ed. 49, 9052–9067 (2010).

    Article  CAS  Google Scholar 

  14. Bull, J. A., Croft, R. A., Davis, O. A., Doran, R. & Morgan, K. F. Oxetanes: recent advances in synthesis, reactivity and medicinal chemistry. Chem. Rev. 116, 12150–12233 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Wuitschik, G. et al. Oxetanes in drug discovery: structural and synthetic insights. J. Med. Chem. 53, 3227–3246 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, X. et al. Discovery of Ziresovir as a potent, selective and orally bioavailable respiratory syncytial virus fusion protein inhibitor. J. Med. Chem. 62, 6003–6014 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. McLaughlin, M., Yazaki, R., Fessard, T. C. & Carreira, E. M. Oxetanyl peptides: novel peptidomimetic modules for medicinal chemistry. Org. Lett. 16, 4070–4073 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Powell, N. H. et al. Synthesis and structure of oxetane containing tripeptide motifs. Chem. Commun. 50, 8797–8800 (2014).

    Article  CAS  Google Scholar 

  19. Beadle, J. D. et al. Solid-phase synthesis of oxetane modified peptides. Org. Lett. 19, 3303–3306 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Möller, G. P. et al. Oxetanyl amino acids for peptidomimetics. Org. Lett. 19, 2510–2513 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Roesner, S. et al. Macrocyclisation of small peptides enabled by oxetane incorporation. Chem. Sci. 10, 2465–2472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burkhard, J. A., Wuitschik, G., Plancher, J.-M., Rogers-Evans, M. & Carreira, E. M. Synthesis and stability of oxetane analogs of thalidomide and lenalidomide. Org. Lett. 15, 4312–4315 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Jung, H. H., Buesking, A. W. & Ellman, J. A. Highly functional group compatible Rh-catalyzed addition of arylboroxines to activated N-tert-butanesulfinyl ketimines. Org. Lett. 13, 3912–3915 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Hamzik, P. J. & Brubaker, J. D. Reactions of oxetan-3-tert-butylsulfinimine for the preparation of substituted 3-aminooxetanes. Org. Lett. 12, 1116–1119 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Bollenbach, M. et al. On water N-arylation of oxetanylamines for the preparation of N-aryl-oxetanylamines; potentially useful aryl-amide isosteres. Chem. Commun. 55, 1623–1626 (2019).

    Article  CAS  Google Scholar 

  27. Kolahdouzan, K. et al. Dual photoredox/nickel-catalyzed conversion of aryl halides to aryl aminooxetanes: computational evidence for a substrate-dependent switch in mechanism. ACS Catal. 10, 405–411 (2020).

    Article  CAS  Google Scholar 

  28. Smedley, C. J. et al. Diversity oriented clicking (DOC): divergent synthesis of SuFExable pharmacophores from 2‐substituted‐alkynyl‐1‐sulfonyl fluoride (SASF) hubs. Angew. Chem. Int. Ed. 59, 12460–12469 (2020).

    Article  CAS  Google Scholar 

  29. Steinkopf, W. Über aromatische Sulfofluoride. J. Prakt. Chem. 117, 1–82 (1927).

    Article  CAS  Google Scholar 

  30. Steinkopf, W. & Jaeger, P. Über aromatische Sulfofluoride. II. Mitteilung. J. Prakt. Chem. 128, 63–88 (1930).

    Article  CAS  Google Scholar 

  31. Lange, W. & Müller, E. Über aryl-fluorsulfonate, Ar. O. SO2F. Berichte Dtsch. Chem. Gesellschaft (A B Ser.) 63, 2653–2657 (1930).

    Article  Google Scholar 

  32. Davies, W. & Dick, J. H. 57. Aliphatic sulphonyl fluorides. J. Chem. Soc. 483–486 (1932).

  33. Davies, W. & Dick, J. H. 285. Benzenesulphonyl fluoride derivatives. J. Chem. Soc. 2042–2046 (1932).

  34. Mukherjee, P. et al. Sulfonamide synthesis via calcium triflimide activation of sulfonyl fluorides. Org. Lett. 20, 3943–3947 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, C. et al. The emerging applications of sulfur(VI) fluorides in catalysis. ACS Catal. 11, 6578–6589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker, B. R. Irreversible enzyme inhibitors. CXLIX. Tissue-specific irreversible inhibitors of dihydrofolic reductase. Acc. Chem. Res. 2, 129–136 (1969).

    Article  CAS  Google Scholar 

  37. Narayanan, A. & Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 6, 2650–2659 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones, L. H. & Kelly, J. W. Structure-based design and analysis of SuFEx chemical probes. RSC Med. Chem. 11, 10–17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Croft, R. A., Mousseau, J. J., Choi, C. & Bull, J. A. Lithium-catalyzed thiol alkylation with tertiary and secondary alcohols: synthesis of 3-sulfanyl-oxetanes as bioisosteres. Chem. Eur. J. 24, 818–821 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Xin, N., Sun, Y., He, M., Radke, C. J. & Prausnitz, J. M. Solubilities of six lithium salts in five non-aqueous solvents and in a few of their binary mixtures. Fluid Phase Equilib. 461, 1–7 (2018).

    Article  CAS  Google Scholar 

  41. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Rakesh, K. P., Shantharam, C. S., Sridhara, M. B., Manukumar, H. M. & Qin, H.-L. Benzisoxazole: a privileged scaffold for medicinal chemistry. MedChemComm 8, 2023–2039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carreira, E. M. & Fessard, T. C. Four-membered ring-containing spirocycles: synthetic strategies and opportunities. Chem. Rev. 114, 8257–8322 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Moritz, A. E. et al. Discovery, optimization and characterization of ML417: a novel and highly selective D3 dopamine receptor agonist. J. Med. Chem. 63, 5526–5567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cavusoglu, E., Frishman, W. H. & Klapholz, M. Vesnarinone: a new inotropic agent for treating congestive heart failure. J. Card. Fail. 1, 249–257 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Iwanaga, Y. et al. A novel water-soluble dopamine-2 antagonist with anticholinesterase activity in gastrointestinal motor activity. Comparison with domperidone and neostigmine. Gastroenterology 99, 401–408 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Skinner, W. A., Kennedy, J., DeGraw, J. I. & Johnson, H. Structure-activity studies of 3,4,5-trimethoxybenzamides. I. Variation of the amine function. J. Med. Chem. 12, 715–717 (1969).

    Article  CAS  PubMed  Google Scholar 

  48. Luts, H. A., Zucarello, W. A., Nobles, W. L. & Grattan, J. F. Amides derived from hepta- and octamethyleneimine. J. Pharm. Sci. 55, 1459–1461 (1966).

    Article  CAS  Google Scholar 

  49. Irikura, T. & Kasuga, K. New antiulcer agents. 1. Synthesis and biological activities of 1-acyl-2-, -3- and -4-substituted benzamidopiperidines. J. Med. Chem. 14, 357–361 (1971).

    Article  CAS  PubMed  Google Scholar 

  50. Index Nominum 2000: International Drug Directory (Medpharm Scientific, 2000).

  51. Pellegrini, R. Clinical effects of trithiozine, a newer gastric anti-secretory agent. J. Int. Med. Res. 7, 452–458 (1979).

    Article  CAS  PubMed  Google Scholar 

  52. Hurley, J. D. & Eshelman, F. N. Trimethobenzamide HCI in the treatment of nausea and vomiting associated with antineoplastic chemotherapy. J. Clin. Pharmacol. 20, 352–356 (1980).

    Article  CAS  PubMed  Google Scholar 

  53. Faghih, R. et al. Synthesis and SAR of aminoalkoxy-biaryl-4-carboxamides: novel and selective histamine H3 receptor antagonists. Bioorganic Med. Chem. Lett. 13, 1325–1328 (2003).

    Article  CAS  Google Scholar 

  54. Black, W. C. et al. Trifluoroethylamines as amide isosteres in inhibitors of cathepsin K. Bioorg. Med. Chem. Lett. 15, 4741–4744 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Gavine, P. R. et al. AZD4547: an orally bioavailable, potent and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 72, 2045–2056 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Kang, J. et al. A selective FGFR inhibitor AZD4547 suppresses RANKL/M-CSF/OPG-dependent ostoclastogenesis and breast cancer growth in the metastatic bone microenvironment. Sci. Rep. 9, 8726 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hirsh, K. & Wang, S. C. Respiratory stimulant effects of ethamivan and picrotoxin. J. Pharmacol. Exp. Ther. 193, 657–663 (1975).

    CAS  PubMed  Google Scholar 

  58. Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Moir, M., Danon, J. J., Reekie, T. A. & Kassiou, M. An overview of late-stage functionalization in today’s drug discovery. Expert Opin. Drug Discov. 14, 1137–1149 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).

    Article  CAS  Google Scholar 

  61. Burés, J. Variable time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. Angew. Chem. Int. Ed. 55, 16084–16087 (2016).

    Article  CAS  Google Scholar 

  62. Kanzian, T., Nigst, T. A., Maier, A., Pichl, S. & Mayr, H. Nucleophilic reactivities of primary and secondary amines in acetonitrile. Eur. J. Org. Chem. 2009, 6379–6385 (2009).

    Article  CAS  Google Scholar 

  63. Mayer, R. J., Breugst, M., Hampel, N., Ofial, A. R. & Mayr, H. Ambident reactivity of phenolate anions revisited: a quantitative approach to phenolate reactivities. J. Org. Chem. 84, 8837–8858 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Gianatassio, R. et al. Strain-release amination. Science 351, 241–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Davies, H. M. L. & Dai, X. Lewis acid-catalyzed tandem Diels-Alder reaction/retro-Claisen rearrangement as an equivalent of the inverse electron demand hetero Diels-Alder reaction. J. Org. Chem. 70, 6680–6684 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).

    Article  PubMed  CAS  Google Scholar 

  68. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Grimme, S. Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys. 118, 9095–9102 (2003).

    Article  CAS  Google Scholar 

  70. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci 8, e1327 (2018).

    Article  Google Scholar 

  72. Rojas, J. J. et al. Amino-oxetanes as amide isosteres by an alternative defluorosulfonylative coupling of sulfonyl fluorides (Imperial College London Research Data Repository, 2021); https://doi.org/10.14469/hpc/8380

Download references

Acknowledgements

We acknowledge support from The Royal Society (University Research Fellowship UF140161 and URF\R\201019 to J.A.B., URF appointed grant no. RG150444 and URF enhancement grant no. RGF\EA\180031), the EPSRC (CAF to J.A.B. (EP/J001538/1) and a DTP studentship to E.L.B), Imperial College London for a Presidents scholarship (to R.A.C.) and Pfizer and Imperial College London for studentship funding (to J.J.R.). A.J.S. thanks the EPSRC Synthesis for Biology and Medicine CDT and the Oxford-Radcliffe Scholarship for support (EP/L015838/1).

Author information

Authors and Affiliations

Authors

Contributions

R.A.C., J.A.B., C.C. and J.J.M. initiated the project. R.A.C., J.J.R., E.L.B., D.A., L.B. and C.C. planned and performed the synthetic experiments and analysed the data. D.C.S. designed, performed and analysed the array screen. J.J.R. and P.H. designed, performed and analysed the kinetic experiments. A.J.P.W. collected, processed and refined single-crystal X-ray diffraction data. A.J.S. and F.D. designed and conducted the computational studies. J.A.B. managed the project. J.J.R., A.J.S., F.D. and J.A.B. wrote the manuscript. All authors discussed the results and contributed to editing the manuscript and preparing the Supplementary Information.

Corresponding author

Correspondence to James A. Bull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Extended scope, supplementary discussion, experimental, computational and procedural details, synthesis and characterization data, HPLC and LCMS traces, X-ray crystallographic data, NMR spectra, Supplementary Schemes 1–11, Figs. 1–63 and Tables 1–32.

Supplementary Data 1

Crystallographic data for compound 1; CCDC reference 2094791.

Supplementary Data 2

Crystallographic data for compound 30; CCDC reference 2049639.

Supplementary Data 3

Crystallographic data for compound 38; CCDC reference 2049640.

Supplementary Data 4

Crystallographic data for compound 49; CCDC reference 2094792.

Supplementary Data 5

Crystallographic data for compound 50; CCDC reference 2094793.

Supplementary Data 6

Crystallographic data for compound 54; CCDC reference 2049754.

Supplementary Data 7

Crystallographic data for compound 56; CCDC reference 2094794.

Supplementary Data 8

Crystallographic data for compound 89; CCDC reference 2094795.

Supplementary Data 9

Crystallographic data for compound 92; CCDC reference 2094871.

Supplementary Data 10

Crystallographic data for compound 93; CCDC reference 2094796.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, J.J., Croft, R.A., Sterling, A.J. et al. Amino-oxetanes as amide isosteres by an alternative defluorosulfonylative coupling of sulfonyl fluorides. Nat. Chem. 14, 160–169 (2022). https://doi.org/10.1038/s41557-021-00856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00856-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing