Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric synthesis of sulfoximines, sulfonimidoyl fluorides and sulfonimidamides enabled by an enantiopure bifunctional S(VI) reagent

Abstract

An increased interest to expand three-dimensional chemical space for the design of new materials and medicines has created a demand for isosteric replacement groups of commonly used molecular functionality. The structural and chemical properties of chiral S(VI) functional groups provide unique spatial and electronic features compared with their achiral sulfur- and carbon-based counterparts. Manipulation of the S(VI) centre to introduce structural variation with stereochemical control has remained a synthetic challenge. The stability of sulfonimidoyl fluorides and the efficiency of sulfur fluorine exchange chemistry has enabled the development of the enantiopure bifunctional S(VI) transfer reagent t-BuSF to overcome current synthetic limitations. Here, we disclose a reagent platform that serves as a chiral sulfur fluorine exchange template for the rapid asymmetric synthesis of over 70 sulfoximines, sulfonimidoyl fluorides and sulfonimidamides with excellent enantiomeric excess and good overall yields. Furthermore, the practical utility of the bifunctional S(VI) transfer reagent was demonstrated in the syntheses of enantiopure pharmaceutical intermediates and analogues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chiral S(VI) functional groups and their preparation.
Fig. 2: Asymmetric synthesis of pharmaceutically relevant compounds and intermediates from t-BuSF.

Similar content being viewed by others

Data availability

All data, including experimental procedures, compound characterization data and stability analysis data, are available within the article and its Supplementary Information. X-ray crystallographic data for the structures within this article and the Supplementary Information have been deposited with the Cambridge Crystallographic Data Centre. The data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. Compounds with X-ray structures: (S)-t-BuSF (CCDC 2243804), 2a (CCDC 2243801), 3f (CCDC 2243803), 4a (CCDC 2243800), 7a (CCDC 2243808), 7d (CCDC 2243809) 7e (CCDC 2243805), 7f (CCDC 2243806), 7i (CCDC 2243802), 7k (CCDC 2243799), 7l (CCDC 2243807), 9a (CCDC 2243810) and S6a (CCDC 2243798).

References

  1. Scott, K. A. & Njardarson, J. T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. 376, 5 (2018).

    Article  Google Scholar 

  2. Devendar, P. & Yang, G. F. Sulfur-containing agrochemicals. Top. Curr. Chem. 375, 82 (2017).

    Article  Google Scholar 

  3. Takimiya, K., Osaka, I., Mori, T. & Nakano, M. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure. Acc. Chem. Res. 47, 1493–1502 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Boyd, D. A. Sulfur and its role in modern materials science. Angew. Chem. Int. Ed. 55, 15486–15502 (2016).

    Article  CAS  Google Scholar 

  5. Yue, T.-J., Wang, L.-Y. & Ren, W.-M. The synthesis of degradable sulfur-containing polymers: precise control of structure and stereochemistry. Polym. Chem. 12, 6650–6666 (2021).

    Article  CAS  Google Scholar 

  6. Gege, C. et al. A helicase-primase drug candidate with sufficient target tissue exposure affects latent neural herpes simplex virus infections. Sci. Transl. Med. 13, eabf8668 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Walker, D. P. et al. Sulfoximine-substituted trifluoromethylpyrimidine analogs as inhibitors of proline-rich tyrosine kinase 2 (PYK2) show reduced hERG activity. Bioorg. Med. Chem. Lett. 19, 3253–3258 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Sehgelmeble, F. et al. Sulfonimidamides as sulfonamides bioisosteres: rational evaluation through synthetic, in vitro, and in vivo studies with γ-secretase inhibitors. ChemMedChem 7, 396–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Foote, K. M. et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. J. Med. Chem. 61, 9889–9907 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Coleman, L., Farady, C., Gatlik, E. & Schieker, M. Dosing regimen for an NLRP3 inhibitor in the treatment of osteoarthritis. WO Patent 2023/002399 A1 (2023).

  11. Lücking, U. Sulfoximines: a neglected opportunity in medicinal chemistry. Angew. Chem. Int. Ed. 52, 9399–9408 (2013).

    Article  Google Scholar 

  12. Lücking, U. Neglected sulfur(VI) pharmacophores in drug discovery: exploration of novel chemical space by the interplay of drug design and method development. Org. Chem. Front. 6, 1319–1324 (2019).

    Article  Google Scholar 

  13. Zhu, Y. et al. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J. Agric. Food Chem. 59, 2950–2957 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Siemeister, G. et al. Bay 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol. Cancer Ther. 11, 2265–2273 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Lücking, U. et al. Changing for the better: discovery of the highly potent and selective CDK9 inhibitor VIP152 suitable for once weekly intravenous dosing for the treatment of cancer. J. Med. Chem. 64, 11651–11674 (2021).

    Article  PubMed  Google Scholar 

  16. Agarwal, S. et al. Discovery of N-cyano-sulfoximineurea derivatives as potent and orally bioavailable NLRP3 inflammasome inhibitors. ACS Med. Chem. Lett. 11, 414–418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Madurka, I. et al. DFV890: a new oral NLR3 inhibitor—tested in an early phase 2a randomised clinical trial in patients with COVID-19 pneumonia and impaired respiratory function. Infection 51, 641–654 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Mäder, P. & Kattner, L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. J. Med. Chem. 63, 14243–14275 (2020).

    Article  PubMed  Google Scholar 

  19. Chinthakindi, P. K. et al. Sulfonimidamides in medicinal and agricultural chemistry. Angew. Chem. Int. Ed. 56, 4100–4109 (2017).

    Article  CAS  Google Scholar 

  20. Frings, M., Bolm, C., Blum, A. & Gnamm, C. Sulfoximines from a medicinal chemist’s perspective: physicochemical and in vitro parameters relevant for drug discovery. Eur. J. Med. Chem. 126, 225–245 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Liang, D.-D. et al. Silicon-free SuFEx reactions of sulfonimidoyl fluorides: scope, enantioselectivity, and mechanism. Angew. Chem. Int. Ed. 59, 7494–7500 (2020).

    Article  CAS  Google Scholar 

  22. Liang, D.-D., Pujari, S. P., Subramaniam, M., Besten, M. & Zuilhof, H. Configurationally chiral SuFEx-based polymers. Angew. Chem. Int. Ed. 61, e202116158 (2022).

    Article  CAS  Google Scholar 

  23. Mukherjee, H. et al. A study of the reactivity of S(VI)–F containing warheads with nucleophilic amino-acid side chains under physiological conditions. Org. Biomol. Chem. 15, 9685–9695 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Luisi, R. & Bull, J. A. Synthesis of sulfoximines and sulfonimidamides using hypervalent iodine mediated NH transfer. Molecules 28, 1120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu, H., Li, Z. & Bolm, C. Copper-catalyzed transsulfinamidation of sulfinamides as a key step in the preparation of sulfonamides and sulfonimidamides. Angew. Chem. Int. Ed. 57, 15602–15605 (2018).

    Article  ADS  CAS  Google Scholar 

  26. Bizet, V., Hendriks, C. M. M. & Bolm, C. Sulfur imidations: access to sulfimides and sulfoximines. Chem. Soc. Rev. 44, 3378–3390 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Y. & Gibson, J. A convenient synthetic route to sulfonimidamides from sulfonamides. RSC Adv. 5, 4171–4174 (2015).

    Article  ADS  CAS  Google Scholar 

  28. Matos, P. M. & Stockman, R. A. Synthetic approaches and applications of sulfonimidates. Org. Biomol. Chem. 18, 6429–6442 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Johnson, C. R. et al. Preparation and reactions of sulfonimidoyl fluorides. J. Org. Chem. 48, 1–3 (1983).

    Article  CAS  Google Scholar 

  30. Lo, P. K. T. & Willis, M. C. Nickel(II)-catalyzed addition of aryl and heteroaryl boroxines to the sulfinylamine reagent TrNSO: the catalytic synthesis of sulfinamides, sulfonimidamides, and primary sulfonamides. J. Am. Chem. Soc. 143, 15576–15581 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Ding, M., Zhang, Z.-X., Davies, T. Q. & Willis, M. C. A silyl sulfinylamine reagent enables the modular synthesis of sulfonimidamides via primary sulfinamides. Org. Lett. 24, 1711–1715 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bremerich, M., Conrads, C. M., Langletz, T. & Bolm, C. Additions to N-sulfinylamines as an approach for the metal-free synthesis of sulfonimidamides: O-benzotriazolyl sulfonimidates as activated intermediates. Angew. Chem. Int. Ed. 58, 19014–19020 (2019).

    Article  CAS  Google Scholar 

  33. Zasukha, S. V. et al. Sulfonimidamides and imidosulfuric diamides: compounds from an underexplored part of biologically relevant chemical space. Chem. Eur. J. 25, 6928–6940 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, B., Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. SuFEx chemistry of thionyl tetrafluoride (SOF4) with organolithium nucleophiles: synthesis of sulfonimidoyl fluorides, sulfoximines, sulfonimidamides, and sulfonimidates. Angew. Chem. Int. Ed. 57, 1939–1943 (2018).

    Article  CAS  Google Scholar 

  35. Davies, T. Q. & Willis, M. C. Rediscovering sulfinylamines as reagents for organic synthesis. Chem. Eur. J. 27, 8918–8927 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, L. & Cornella, J. A unified strategy for arylsulfur(VI) fluorides from aryl halides: access to Ar-SOF3 compounds. Angew. Chem. Int. Ed. 59, 23510–23515 (2020).

    Article  CAS  Google Scholar 

  37. Liu, Y. et al. Rapid access to N-protected sulfonimidoyl fluorides: divergent synthesis of sulfonamides and sulfonimidamides. Org. Lett. 23, 3975–3980 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Passia, M. T. et al. Acid-mediated imidazole-to-fluorine exchange for the synthesis of sulfonyl and sulfonimidoyl fluorides. Org. Lett. 24, 8802–8805 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Passia, M. T., Amer, M. M., Demaerel, J. & Bolm, C. Synthesis of sulfonyl, sulfonimidoyl, and sulfoxyl fluorides under solvent-free mechanochemical conditions in a mixer mill by imidazole-to-fluorine exchange. ACS Sustain. Chem. Eng. 11, 6838–6843 (2023).

    Article  CAS  Google Scholar 

  40. Kleymann, G. & Gege, C. Preparation of enantiomers of substituted thiazoles as antiviral compounds. WO Patent 2019/068817 A1 (2019).

  41. Brandt, J. & Gais, H.-J. An efficient resolution of (±)-S-methyl-S-phenylsulfoximine with (+)-10-camphorsulfonic acid by the method of half-quantities. Tetrahedron: Asymmetry 8, 909–912 (1997).

    Article  CAS  Google Scholar 

  42. Zhang, X., Wang, F. & Tan, C.-H. Asymmetric synthesis of S(IV) and S(VI) stereogenic centers. JACS Au 3, 700–714 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. García-Cárceles, J. et al. 2-(fluoromethoxy)-4′-(s-methanesulfonimidoyl)-1,1′-biphenyl (UCM-1306), an orally bioavailable positive allosteric modulator of the human dopamine D1 receptor for Parkinson’s disease. J. Med. Chem. 65, 12256–12272 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang, X., Ang, E. C. X., Yang, Z., Kee, C. W. & Tan, C.-H. Synthesis of chiral sulfinate esters by asymmetric condensation. Nature 604, 298–303 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aota, Y., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral sulfoximines via the S-arylation of sulfinamides. J. Am. Chem. Soc. 141, 19263–19268 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Aota, Y., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral sulfoximines through the S-alkylation of sulfinamides. Angew. Chem. Int. Ed. 58, 17661–17665 (2019).

    Article  CAS  Google Scholar 

  47. Maeda, Y. et al. Practical asymmetric synthesis of chiral sulfoximines via sulfur-selective alkylation. J. Org. Chem. 87, 3652–3660 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Mendonça Matos, P., Lewis, W., Argent, S. P., Moore, J. C. & Stockman, R. A. General method for the asymmetric synthesis of N–H sulfoximines via C–S bond formation. Org. Lett. 22, 2776–2780 (2020).

    Article  PubMed  Google Scholar 

  49. Yang, G.-F. et al. Synthesis of chiral sulfonimidoyl chloride via desymmetrizing enantioselective hydrolysis. J. Am. Chem. Soc. 145, 5439–5446 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Greed, S., Symes, O. & Bull, J. A. Stereospecific reaction of sulfonimidoyl fluorides with Grignard reagents for the synthesis of enantioenriched sulfoximines. Chem. Commun. 58, 5387–5390 (2022).

    Article  CAS  Google Scholar 

  51. Greed, S. et al. Synthesis of highly enantioenriched sulfonimidoyl fluorides and sulfonimidamides by stereospecific sulfur–fluorine exchange (SuFEx) reaction. Chem. Eur. J. 26, 12533–12538 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Shultz, Z. P., Scattolin, T., Wojtas, L. & Lopchuk, J. M. Stereospecific α-(hetero)arylation of sulfoximines and sulfonimidamides. Nat. Synth. 1, 170–179 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Booms, R. E. & Cram, D. J. Stereochemistry of sulfur compounds. III. Radical-chain mechanism for racemization of sulfinamides. J. Am. Chem. Soc. 94, 5438–5446 (1972).

    Article  CAS  Google Scholar 

  54. Clarke, V. & Cole, E. R. Sulfenamides and sulfinamides IX exchange reactions of aryl sulfinamides. Phosphorus Sulf Silicon Relat. Elem. 92, 45–50 (1994).

    Article  CAS  Google Scholar 

  55. Li-Yuan Bao, R., Zhao, R. & Shi, L. Progress and developments in the turbo Grignard reagent i-PrMgCl·LiCl: a ten-year journey. Chem. Commun. 51, 6884–6900 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Lawrence (H. Lee Moffitt Cancer Center and Research Institute) and L. Calcul (University of South Florida) for NMR and high-resolution mass spectrometry support, and Q. Tang (USF) for assistance with X-ray crystallographic analysis. We gratefully acknowledge the National Institutes of Health (National Institute of General Medical Sciences; R35-GM142577, J.M.L.) for support of this research. This work has also been supported in part by the Chemical Biology Core Facility at the H. Lee Moffitt Cancer Center and Research Institute, a National Cancer Institute designated Comprehensive Cancer Center (P30-CA076292) and the University of South Florida’s Chemical Purification Analysis and Screening Core Facility.

Author information

Authors and Affiliations

Authors

Contributions

S.T., Z.P.S. and J.M.L. designed the study. S.T., Z.P.S. and C.S. performed the experiments and interpreted the results. C.S. and L.W. performed the X-ray crystallographic analysis. Z.P.S. and J.M.L. prepared the manuscript for publication.

Corresponding author

Correspondence to Justin M. Lopchuk.

Ethics declarations

Competing interests

A patent application naming J.M.L., Z.P.S. and S.T. as inventors has been filed by H. Lee Moffitt Cancer Center and Research Institute, which covers the synthetic methods and development regarding a chiral bifunctional S(VI) reagent for the asymmetric synthesis of sulfur-containing functional groups. The remaining authors declare no competing interest.

Peer review

Peer review information

Nature Chemistry thanks Yantao Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussions, Figs. 1–27, Tables 1–18, NMR spectra and HPLC chromatograms.

Supplementary Data 1

Crystallographic data for compound t-BuSF; CCDC reference 2243804.

Supplementary Data 2

Crystallographic data for compound 2a; CCDC reference 2243801.

Supplementary Data 3

Crystallographic data for compound 3f; CCDC reference 2243803.

Supplementary Data 4

Crystallographic data for compound 4a; CCDC reference 2243800.

Supplementary Data 5

Crystallographic data for compound S6a; CCDC reference 2243798.

Supplementary Data 6

Crystallographic data for compound 7k; CCDC reference 2243799.

Supplementary Data 7

Crystallographic data for compound 7a; CCDC reference 2243808.

Supplementary Data 8

Crystallographic data for compound 7i; CCDC reference 2243802.

Supplementary Data 9

Crystallographic data for compound 7f; CCDC reference 2243806.

Supplementary Data 10

Crystallographic data for compound 7l; CCDC reference 2243807.

Supplementary Data 11

Crystallographic data for compound 7e; CCDC reference 2243805.

Supplementary Data 12

Crystallographic data for compound 7d; CCDC reference 2243809.

Supplementary Data 13

Crystallographic data for compound 9a; CCDC reference 2243810.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, S., Shultz, Z.P., Shan, C. et al. Asymmetric synthesis of sulfoximines, sulfonimidoyl fluorides and sulfonimidamides enabled by an enantiopure bifunctional S(VI) reagent. Nat. Chem. 16, 183–192 (2024). https://doi.org/10.1038/s41557-023-01419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01419-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing