Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GDF1 ameliorates cognitive impairment induced by hearing loss

Abstract

Hearing loss is associated with an increased risk of Alzheimer disease (AD). However, the mechanisms of hearing loss promoting the onset of AD are poorly understood. Here we show that hearing loss aggravates cognitive impairment in both wild-type mice and mouse models of AD. Embryonic growth/differentiation factor 1 (GDF1) is downregulated in the hippocampus of deaf mice. Knockdown of GDF1 mimics the detrimental effect of hearing loss on cognition, while overexpression of GDF1 in the hippocampus attenuates the cognitive impairment induced by deafness. Strikingly, overexpression of GDF1 also attenuates cognitive impairment in APP/PS1 transgenic mice. GDF1 activates Akt, which phosphorylates asparagine endopeptidase and inhibits asparagine endopeptidase-induced synaptic degeneration and amyloid-β production. The expression of GDF1 is downregulated by the transcription factor CCAAT-enhancer binding protein-β. These findings indicate that hearing loss could promote AD pathological changes by inhibiting the GDF1 signaling pathway; thus, GDF1 may represent a therapeutic target for AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hearing loss promotes AD pathologies and cognitive impairment.
Fig. 2: Expression of Gdf1 is decreased in WT and APP/PS1 mice with hearing loss.
Fig. 3: Overexpression of GDF1 in the hippocampus attenuates the cognitive dysfunction caused by deafness.
Fig. 4: GDF1 activates Akt and inhibits AEP activity.
Fig. 5: Knockdown of GDF1 aggravates AD pathology.
Fig. 6: C/EBPβ inhibits the expression of GDF1.

Similar content being viewed by others

Data availability

Additional data that support the findings of this study are available from the corresponding authors upon reasonable request. All the RNA-seq results presented in this paper are based on the processed data generated by bioinformatics specialists at the BGI, which are presented in Supplementary Table 1. The raw reads of the RNA-seq analyses presented in Fig. 2a–d are not available because they were deleted by BGI before they could be retrieved by the authors at the time of acceptance of this manuscript. Source data are provided with this paper.

References

  1. Lee, M. et al. Variation in population attributable fraction of dementia associated with potentially modifiable risk factors by race and ethnicity in the US. JAMA Netw. Open 5, e2219672 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ford, A. H. et al. Hearing loss and the risk of dementia in later life. Maturitas 112, 1–11 (2018).

    Article  PubMed  Google Scholar 

  3. Liu, C.-M. & Lee, C. T.-C. Association of hearing loss with dementia. JAMA Netw. Open 2, e198112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Loughrey, D. G., Kelly, M. E., Kelley, G. A., Brennan, S. & Lawlor, B. A. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia. JAMA Otolaryngol. Head Neck Surg. 144, 115–126 (2018).

    Article  PubMed  Google Scholar 

  5. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nedelec, T. et al. Identifying health conditions associated with Alzheimer’s disease up to 15 years before diagnosis: an agnostic study of French and British health records. Lancet Digit. Health 4, e169–e178 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Johnson, J. C. S. et al. Hearing and dementia: from ears to brain. Brain 144, 391–401 (2021).

    Article  PubMed  Google Scholar 

  9. Griffiths, T. D. et al. How can hearing loss cause dementia? Neuron 108, 401–412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swords, G. M., Nguyen, L. T., Mudar, R. A. & Llano, D. A. Auditory system dysfunction in Alzheimer disease and its prodromal states: a review. Ageing Res. Rev. 44, 49–59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Coebergh, J. A. F. et al. Auditory agnosia for environmental sounds in Alzheimer’s disease: not hearing and not listening? J. Alzheimers Dis. 73, 1407–1419 (2020).

    Article  PubMed  Google Scholar 

  12. Salemme, S. et al. Pure word deafness: a case report of an atypical manifestation of Alzheimer’s disease. Neurol. Sci. 43, 5275–5279 (2022).

    Article  PubMed  Google Scholar 

  13. Brenowitz, W. D. et al. Association of genetic risk for Alzheimer disease and hearing impairment. Neurology 95, e2225–e2234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, Y. et al. Hearing loss is an early biomarker in APP/PS1 Alzheimer’s disease mice. Neurosci. Lett. 717, 134705 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Mei, L., Liu, L.-M., Chen, K. & Zhao, H.-B. Early functional and cognitive declines measured by auditory-evoked cortical potentials in mice with Alzheimer’s disease. Front. Aging Neurosci. 13, 710317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park, S. Y. et al. Cognitive decline and increased hippocampal p-tau expression in mice with hearing loss. Behav. Brain Res. 342, 19–26 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Mun, S.-K. et al. MicroRNAs related to cognitive impairment after hearing loss. Clin. Exp. Otorhinolaryngol. 14, 76–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, J. S. et al. Conductive hearing loss aggravates memory decline in Alzheimer model mice. Front. Neurosci. 14, 843 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paciello, F. et al. Auditory sensory deprivation induced by noise exposure exacerbates cognitive decline in a mouse model of Alzheimer’s disease. eLife 10, e70908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Armstrong, N. M. et al. Association of midlife hearing impairment with late-life temporal lobe volume loss. JAMA Otolaryngol. Head Neck Surg. 145, 794–802 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Golub, J. S., Sharma, R. K., Rippon, B. Q., Brickman, A. M. & Luchsinger, J. A. The association between early age-related hearing loss and brain β-amyloid. Laryngoscope 131, 633–638 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Irace, A. L., Rippon, B. Q., Brickman, A. M., Luchsinger, J. A. & Golub, J. S. The Laterality of early age-related hearing loss and brain β-amyloid. Otol. Neurotol. 43, e382–e390 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang, H.-F. et al. Hearing impairment is associated with cognitive decline, brain atrophy and tau pathology. EbioMedicine 86, 104336 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, W. et al. Age-related hearing loss accelerates cerebrospinal fluid tau levels and brain atrophy: a longitudinal study. Aging 11, 3156–3169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng, M. et al. Worsening hearing was associated with higher β-amyloid and tau burden in age-related hearing loss. Sci. Rep. 12, 10493 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin, F. R. et al. Hearing loss and incident dementia. Arch. Neurol. 68, 214–220 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nianogo, R. A. et al. Risk factors associated with Alzheimer disease and related dementias by sex and race and ethnicity in the US. JAMA Neurol. 79, 584–591 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Adrait, A. et al. Do hearing aids influence behavioral and psychological symptoms of dementia and quality of life in hearing impaired Alzheimer’s disease patients and their caregivers? J. Alzheimers Dis. 58, 109–121 (2017).

    Article  PubMed  Google Scholar 

  29. Dillard, L. K. et al. Associations of hearing loss and hearing aid use with cognition, health-related quality of life, and depressive symptoms. J. Aging Health 35, 455–465 (2023).

    Article  PubMed  Google Scholar 

  30. Mahmoudi, E. et al. Can hearing aids delay time to diagnosis of dementia, depression, or falls in older adults? J. Am. Geriatr. Soc. 67, 2362–2369 (2019).

    Article  PubMed  Google Scholar 

  31. Neff, R. M. et al. Neuropathological findings of dementia associated with subjective hearing loss. Otol. Neurotol. 40, e883–e893 (2019).

    Article  PubMed  Google Scholar 

  32. Yang, Z. et al. Effect of hearing aids on cognitive functions in middle-aged and older adults with hearing loss: a systematic review and meta-analysis. Front. Aging Neurosci. 14, 1017882 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Derynck, R. & Budi, E. H. Specificity, versatility and control of TGF-β family signaling. Sci. Signal. 12, eaav5183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Onishi, Y. et al. GDF1 is a novel mediator of macrophage infiltration in brown adipose tissue of obese mice. Biochem. Biophys. Rep. 5, 216–223 (2016).

    PubMed  Google Scholar 

  35. Zhang, Z. et al. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat. Commun. 6, 8762 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Z.-H. et al. BDNF inhibits neurodegenerative disease-associated asparaginyl endopeptidase activity via phosphorylation by AKT. JCI Insight 3, e99007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heldin, C.-H. & Moustakas, A. Signaling receptors for TGF-β family members. Cold Spring Harb. Perspect. Biol. 8, a022053 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang, Z.-H. et al. C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer’s disease. Nat. Commun. 9, 1784 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Spike, A. J. & Rosen, J. M. C/EBPß isoform specific gene regulation: it’s a lot more complicated than you think! J. Mammary Gland Biol. Neoplasia 25, 1–12 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Müller, C. et al. Reduced expression of C/EBPβ-LIP extends health and lifespan in mice. eLife 7, e34985 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Omura, J. D. et al. Modifiable risk factors for Alzheimer disease and related dementias among adults aged ≥45 years—United States, 2019. MMWR Morb. Mortal. Wkly Rep. 71, 680–685 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cunningham, L. L. & Tucci, D. L. Hearing loss in adults. N. Engl. J. Med. 377, 2465–2473 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nieman, C. L. & Oh, E. S. Hearing loss. Ann. Intern. Med. 173, ITC81–ITC96 (2020).

    Article  PubMed  Google Scholar 

  44. Wu, W. J. et al. Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague–Dawley rat. Hear. Res. 158, 165–178 (2001).

  45. Li, Y., Liu, S., Teng, Q., Gong, S. & Liu, K. A method for constructing a mouse model of congenital hearing loss by bilateral cochlear ablation. J. Neurosci. Methods 378, 109641 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Mostafapour, S. P., Cochran, S. L., Del Puerto, N. M. & Rubel, E. W. Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J. Comp. Neurol. 426, 561–571 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Llano, D. A., Issa, L. K., Devanarayan, P. & Devanarayan, V. & Alzheimer’s Disease Neuroimaging Initiative (ADNI). Hearing loss in Alzheimer’s disease is associated with altered serum lipidomic biomarker profiles. Cells 9, 2556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Llano, D. A., Kwok, S. S., Devanarayan, V. & Alzheimer’s Disease Neuroimaging Initiative (ADNI). Reported hearing loss in Alzheimer’s disease is associated with loss of brainstem and cerebellar volume. Front. Hum. Neurosci. 15, 739754 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang, W.-J. et al. Clinical features and potential mechanisms relating neuropathological biomarkers and blood–brain barrier in patients with Alzheimer’s disease and hearing loss. Front. Aging Neurosci. 14, 911028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Z.-H. et al. Neuronal ApoE4 stimulates C/EBPβ activation, promoting Alzheimer’s disease pathology in a mouse model. Prog. Neurobiol. 209, 102212 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Martorell, A. J. et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell 177, 256–271 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spongr, V. P., Flood, D. G., Frisina, R. D. & Salvi, R. J. Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life spans. J. Acoust. Soc. Am. 101, 3546–3553 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Henry, K. R. & Chole, R. A. Genotypic differences in behavioral, physiological and anatomical expressions of age-related hearing loss in the laboratory mouse. Audiology 19, 369–383 (1980).

    Article  CAS  PubMed  Google Scholar 

  54. Rankin, C. T., Bunton, T., Lawler, A. M. & Lee, S. J. Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat. Genet. 24, 262–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, W. et al. Epigenetic silencing of GDF1 disrupts SMAD signaling to reinforce gastric cancer development. Oncogene. 35, 2133–2144 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Cheng, W. et al. Growth differentiation factor 1-induced tumour plasticity provides a therapeutic window for immunotherapy in hepatocellular carcinoma. Nat. Commun. 12, 7142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, S. J. Expression of growth/differentiation factor 1 in the nervous system: conservation of a bicistronic structure. Proc. Natl Acad. Sci. USA 88, 4250–4254 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jaeger, P. A. et al. Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain. Mol. Neurodegener. 11, 31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hinck, A. P., Mueller, T. D. & Springer, T. A. Structural biology and evolution of the TGF-β family. Cold Spring Harb. Perspect. Biol. 8, a022103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang, Y. E. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb. Perspect. Biol. 9, a022129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Derynck, R., Zhang, Y. & Feng, X. H. Transcriptional activators of TGF-β responses: Smads. Cell 95, 737–740 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, J. et al. Akt and calcium-permeable AMPA receptor are involved in the effect of pinoresinol on amyloid β-induced synaptic plasticity and memory deficits. Biochem. Pharmacol. 184, 114366 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Rai, S. N. et al. The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox. Res. 35, 775–795 (2019).

  65. Singh, A. K. et al. Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats. Mol. Neurobiol. 54, 5815–5828 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Shah, S. A., Lee, H. Y., Bressan, R. A., Yun, D. J. & Kim, M. O. Novel osmotin attenuates glutamate-induced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain. Cell Death Dis. 5, e1026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beaulieu, J.-M. et al. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122, 261–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Q. et al. Control of synaptic strength, a novel function of Akt. Neuron 38, 915–928 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Wu, Z. et al. Neurotrophic signaling deficiency exacerbates environmental risks for Alzheimer’s disease pathogenesis. Proc. Natl Acad. Sci. USA 118, e2100986118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Z.-H. et al. Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-secretase by upregulating C/EBPβ in Alzheimer’s disease. Cell Rep. 28, 655–669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet. 13, 159–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Wu, W. J. et al. Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague–Dawley rat. Hear. Res. 158, 165–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, S. et al. Developmental abnormalities in supporting cell phalangeal processes and cytoskeleton in the Gjb2 knockdown mouse model. Dis. Model. Mech. 11, dmm033019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tian, Y. et al. Transgenic mice expressing human α-synuclein 1–103 fragment as a novel model of Parkinson’s disease. Front. Aging Neurosci. 13, 760781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kaech, S. & Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Pan, L. et al. Tau accelerates α-synuclein aggregation and spreading in Parkinson’s disease. Brain 145, 3454–3471 (2022).

    Article  PubMed  Google Scholar 

  77. O’Brien, C. E., Bonanno, L., Zhang, H. & Wyss-Coray, T. Beclin 1 regulates neuronal transforming growth factor-β signaling by mediating recycling of the type I receptor ALK5. Mol. Neurodegener. 10, 69 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang, X. et al. Amphiphysin I cleavage by asparagine endopeptidase leads to tau hyperphosphorylation and synaptic dysfunction. eLife 10, e65301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sahara, M. et al. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells. Cell Res. 24, 820–841 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Z. et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat. Med. 20, 1254–1262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nunez, J. Morris water maze experiment. J. Vis. Exp. (19), 897 (2008).

  82. Zhang, G. et al. Islet amyloid polypeptide cross-seeds tau and drives the neurofibrillary pathology in Alzheimer’s disease. Mol. Neurodegener. 17, 12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Q. et al. Activation of Wnt/β-catenin pathway mitigates blood–brain barrier dysfunction in Alzheimer’s disease. Brain 145, 4474–4488 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (no. 2019YFE0115900), the National Natural Science Foundation of China (nos. 82271447 and 81822016) and the Innovative Research Groups of Hubei Province (no. 2022CFA026).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. conceived the project and designed the experiments. L.P. and C.L. performed most of the experiments. L.M., G.Z., D.S., X.Z., M.X. and Z.H. helped with the cell culture and animal experiments. L.Z. and D.X. performed the electrophysiological experiments. Y.T. and T.X. helped analyze the RNA-seq data. S.C. and Y.S. helped with the ABR experiments.

Corresponding author

Correspondence to Zhentao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Hongbo Zhao, Shinichi Someya, Yadong Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cochlear ablation promotes AD pathologies.

a, b, Representative images of Aβ deposition in APP/PS1 mice 6 m after cochlear ablation (n = 6 mice per group). AuC, auditory cortex; TeA, temporal association cortex. Scale bar, 200 μm. c, d, ThS staining of Aβ plaques in the hippocampus of WT and APP/PS1 mice (n = 6 mice per group). Scale bar, 50 μm. e, RT-PCR shows the mRNA levels of mAPP and HuAPP in the hippocampus (n = 6 mice per group). f, Western blot analysis of ADAM10 and BACE1 levels in the hippocampus (n = 5 mice per mouse). Right, quantification analysis. Data are presented as means ± SEM. P values were determined by two-sided Mann-Whitney test (b, d) or two-way ANOVA (e, f). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. n.s., not significant.

Source data

Extended Data Fig. 2 Cochlear ablation leads to synaptic dysfunction.

a, b, Morris water maze test showed no difference in escape latency (a) or swim speed (b) in the visible training (n = 13 in the WT-SO group, n = 7 in the WT-CA group, n = 15 in the APP/PS1-SO group, n = 11 in the APP/PS1-CA group). c-g, Electron microscopy of synapses. Shown are the representative images (c), synaptic density (d), the average thickness of PSD (e), length of the active zone (f), and width of synaptic clefts (g). Scale bar, 2 μm. (n = 6 fields per group). h, Western blot analysis of synaptic proteins in the hippocampus (n = 5 mice per group). Right, quantification of PSD95, synapsin 1, synaptophysin, and VAMP2. Data are presented as means ± SEM. P values were determined by two-way ANOVA (a, b, d-h). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. n.s., not significant.

Source data

Extended Data Fig. 3 Administration of kanamycin promotes AD pathologies.

a, Schematic diagram of the experimental procedure and timeline. Subcutaneous injection of normal saline (NS) or kanamycin (Kana) was conducted on WT and APP/PS1 mice at 3 months of age. b, ABR threshold results. The left panel shows click-evoked ABR thresholds at 1 month after saline or kanamycin injection. The right panel shows pure tone-evoked ABR thresholds 1 month and 6 months after modeling (n = 13 in the WT-NS group, n = 14 in the WT-Kana group, n = 10 in the APP/PS1-NS group, n = 8 in the APP/PS1-Kana group). c, Immunofluorescence (red) and ThS staining (green) of Aβ deposition. AuC, auditory cortex. Scale bar, 50 μm. d, Quantitative analysis of immunofluorescence (n = 8 mice per group). e, Western blot detection of APP and CTF fragments in hippocampal lysates from WT and APP/PS1 mice at 6 months after kanamycin injection (n = 5 mice per group). f, Quantification of Western blots. g, RT-PCR shows the mRNA levels of mAPP and HuAPP in the hippocampus (n = 6 mice per group). h, Western blot analysis of ADAM10 and BACE1 levels in the hippocampus (n = 5 mice per group). i, Quantification analysis of (h). Data are presented as means ± SEM. P values were determined by two-sided Mann-Whitney test (d), or two-way ANOVA (b, f, g, i). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s., not significant.

Source data

Extended Data Fig. 4 Kanamycin-induced hearing loss leads to cognitive impairment.

a-f, Spatial memory was determined in the Morris water maze test. Shown are the escape latency (a) and swim speed (b) in the visible train, escape latency in the hidden training (c-e), and time in the target zone in the probe trial (f). AUC, area under the curve. g, h, Working memory was assessed in the Y-maze test 6 months after kanamycin injection in WT and APP/PS1 mice. n = 13 in the WT-NS group, n = 14 in the WT-Kana group, n = 10 in the APP/PS1-NS group, n = 8 in the APP/PS1-Kana group. i, Western blot analysis of synaptic proteins in the hippocampus. j, Quantification of PSD95, synapsin 1, synaptophysin, and VAMP2 (n = 5 mice per group). Data are presented as means ± SEM. P values were determined by two-way ANOVA (a, b, d, e, g, j) or Kruskal-Wallis tests (f, h). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s., not significant.

Source data

Extended Data Fig. 5 KEGG pathway enrichment analysis in WT mice.

a, Top 20 KEGG pathway terms gathering most DEGs in WT mice as determined by enrichment analysis. b, KEGG interaction network illustrating the relationship among the most significant DEGs in WT mice ranked by q-values.

Extended Data Fig. 6 GDF1 levels in mouse brains injected with AAV-GDF1 or AAV-shGDF1.

a, Levels of GDF1 in hippocampal tissue from WT or APP/PS1 mice injected with AAV-GDF1 or control AAVs. b, Quantification analysis of (a). n = 5 mice per group. c, Double-labeling immunofluorescence of hippocampal sections from control, GDF1-overexpressing (GDF1 OE), and GDF1-knockdown (GDF1 KD) mice. GDF1 (red) and MAP2, Iba1, GFAP (green). Regions in the box are enlarged at right. Arrowheads indicate colocalization. Intensity trace are plotted below. The upper right panel shows the quantification of the fraction of GDF1 colocalizing with MAP2, Iba1, or GFAP. The bottom right panel shows the quantification of GDF1 fluorescence intensity in control, GDF1 OE, and GDF1 KD mice. AFU, Arbitrary fluorescence intensity. n = 5 fields per group. Scale bar, 20 μm. Data are presented as means ± SEM. P values were determined by two-way ANOVA (b) or one-way ANOVA (c). *P < 0.05, **P < 0.01.

Source data

Extended Data Fig. 7 GDF1 knockdown inhibits AKT signaling pathway.

a, Levels of GDF1 in hippocampal tissues from WT or APP/PS1 mice injected with AAV-shGDF1 or control virus. b, Quantitative analysis of (a). n = 5 mice per group. c, Western blot analysis of AKT, p-AKT, AEP, and APP N585 in the hippocampus. d, Quantitative analysis of (c) (n = 5 mice per group). e, AEP activity assay. n = 6 mice per group. Data are presented as means ± SEM. P values were determined by two-way ANOVA (b, d, e). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. n.s., not significant.

Source data

Extended Data Fig. 8 GDF1 overexpression attenuates AD pathogenesis.

a, Schematic diagram of the experimental procedure and timeline. b, Levels of GDF1 in hippocampal tissue of WT or APP/PS1 mice injected with GFP-GDF1 virus or control virus. c, Quantification analysis of (b) (n = 5 mice per group). d, The expression of GFP in mice injected with GFP-vector or GFP-GDF1 virus. Scale bar, 200 μm. e, Pure tone-evoked ABR thresholds 1 month and 5 months after AAV injection (n = 12 in the WT-Vector group, n = 12 in the WT-GDF1 group, n = 8 in the APP/PS1-Vector group, n = 8 in the APP/PS1-GDF1 group). f-k, Spatial memory was determined in the Morris water maze test. Shown are the escape latency (f) and swim speed (g) in the visible train, the escape latency in the hidden training (h-j), and time in the target zone in the probe trial (k). AUC, area under the curve. n = 12 in the WT-Vector group, n = 12 in the WT-GDF1 group, n = 8 in the APP/PS1-Vector group, n = 8 in the APP/PS1-GDF1 group. l, m, IHC analysis of Aβ deposition in the hippocampus and retrosplenial area (RSP) of APP/PS1 mice. Brain slices were stained with human Aβ antibody. Scale bar, 50 μm. n = 6 mice per group. n, o, Effect of GDF1 on APP processing in the hippocampus (n = 5 mice per group). Data are presented as means ± SEM. P values were determined by two-sided Kruskal-Wallis tests (k), two-sided Mann-Whitney test (m), or two-way ANOVA test (c, f, g, i, j, o). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. n.s., not significant.

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

RNA-seq data.

Supplementary Table 2

Sequences of oligonucleotides.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 1

Unprocessed immunoblots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 2

Unprocessed immunoblots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Unprocessed immunoblots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Unprocessed immunoblots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 5

Unprocessed immunoblots.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 6

Unprocessed immunoblots.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed immunoblots.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 2

Unprocessed immunoblots.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 3

Unprocessed immunoblots.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 4

Unprocessed immunoblots.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 6

Unprocessed immunoblots.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 7

Unprocessed immunoblots.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 8

Unprocessed immunoblots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Li, C., Meng, L. et al. GDF1 ameliorates cognitive impairment induced by hearing loss. Nat Aging 4, 568–583 (2024). https://doi.org/10.1038/s43587-024-00592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-024-00592-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing