Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adapting crop production to climate change and air pollution at different scales

Abstract

Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adaptation of crop production to air pollution and climate change at the plant, field and ecosystem levels.
Fig. 2: Overcoming current limitations in adapting agroecosystems to climate change and air pollution at different scales.

Similar content being viewed by others

References

  1. Khush, G. S. Green revolution: the way forward. Nat. Rev. Genet. 2, 815–822 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Brisson, N. et al. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 119, 201–212 (2010).

    Article  Google Scholar 

  3. World Population Prospects: The 2017 Revision (Department of Economic & Social Affairs, United Nations, 2017).

  4. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  5. Transforming Our World: The 2030 Agenda for Sustainable Development (UN General Assembly, 2015); https://www.refworld.org/docid/57b6e3e44.html

  6. Wang, F. et al. Climate change: strategies for mitigation and adaptation. Innov. Geosci. 1, 100015 (2023).

    Article  Google Scholar 

  7. Fuhrer, J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric. Ecosyst. Environ. 97, 1–20 (2003).

    Article  CAS  Google Scholar 

  8. Otu-Larbi, F., Conte, A., Fares, S., Wild, O. & Ashworth, K. Current and future impacts of drought and ozone stress on Northern Hemisphere forests. Glob. Change Biol. 26, 6218–6234 (2020).

    Article  ADS  Google Scholar 

  9. Smith, M. R. & Myers, S. S. Global health implications of nutrient changes in rice under high atmospheric carbon dioxide. GeoHealth. 3, 190–200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loladze, I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3, e02245 (2014).

  11. Chavan, S. G., Duursma, R. A., Tausz, M. & Ghannoum, O. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J. Exp. Bot. 70, 6447–6459 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh, A. A., Ghosh, A., Pandey, B., Agrawal, M. & Agrawal, S. B. Unravelling the ozone toxicity in Zea mays L. (C4 plant) under the elevated level of CO2 fertilization. Trop. Ecol. https://doi.org/10.1007/s42965-023-00298-6 (2023).

  13. Poorter, H. et al. A meta-analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole-plant level. New Phytol. 233, 1560–1596 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    Article  ADS  Google Scholar 

  15. Zhou, D. et al. Croplands intensify regional and global warming according to satellite observations. Remote Sens. Environ. 264, 112585 (2021).

    Article  Google Scholar 

  16. Lin, M. et al. Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe. Nat. Clim. Change 10, 444–451 (2020).

    Article  ADS  CAS  Google Scholar 

  17. Frei, M. Breeding of ozone resistant rice: relevance, approaches and challenges. Environ. Pollut. 197, 144–155 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Mills, G. et al. Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance. Glob. Change Biol. 24, 4869–4893 (2018).

    Article  ADS  Google Scholar 

  19. Collard, B. C. Y. & Mackill, D. J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil. Trans. R. Soc. B 363, 557–572 (2007).

    Article  PubMed Central  Google Scholar 

  20. Wang, W. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Ye, C. et al. in Rice Improvement (eds Ali, J. & Wani, S. H.) 203–220 (Springer, 2021).

  23. Frei, M., Tanaka, J. P. & Wissuwa, M. Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. J. Exp. Bot. 59, 3741–3752 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Sorgini, C. A., Barrios-Perez, I., Brown, P. J. & Ainsworth, E. A. Examining genetic variation in maize inbreds and mapping oxidative stress response QTL in B73-Mo17 nearly isogenic lines. Front. Sustain. Food Syst. 3, 51 (2019).

    Article  Google Scholar 

  25. Begum, H. et al. Genetic dissection of bread wheat diversity and identification of adaptive loci in response to elevated tropospheric ozone. Plant. Cell Environ. 43, 2650–2665 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Waldeck, N. et al. RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels. BMC Genom. 18, 498 (2017).

    Article  Google Scholar 

  27. Yendrek, C. R., Koester, R. P. & Ainsworth, E. A. A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops. J. Exp. Bot. 66, 7101–7112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tausz, M. et al. Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ. Exp. Bot. 88, 71–80 (2013).

    Article  CAS  Google Scholar 

  29. Dai, L. P. et al. Mapping of QTLs for source and sink associated traits under elevated CO2 in rice (Oryza sativa L.). Plant Growth Regul. 90, 359–367 (2020).

    Article  CAS  Google Scholar 

  30. Nakano, H. et al. Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions. Sci. Rep. 7, 1827 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Fan, G. et al. Analysis of QTLs for flag leaf shape and its response to elevated CO2 in rice (Oryza sativa). Rice Sci. 14, 7–12 (2007).

    Article  Google Scholar 

  32. Palit, P. et al. An integrated research framework combining genomics, systems biology, physiology, modelling and breeding for legume improvement in response to elevated CO2 under climate change scenario. Curr. Plant Biol. 22, 100149 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).

    Article  ADS  CAS  Google Scholar 

  34. Flexas, J. et al. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol. 172, 73–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J. & Medrano, H. Mesophyll conductance to CO2: current knowledge and future prospects. Plant. Cell Environ. 31, 602–621 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Paoletti, E. Impact of ozone on Mediterranean forests: a review. Environ. Pollut. 144, 463–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    Article  ADS  Google Scholar 

  38. Papanatsiou, M. et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363, 1456–1459 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Qu, M. et al. Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions. Plant J. 104, 1334–1347 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Hoshika, Y., Watanabe, M., Inada, N. & Koike, T. Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata). Ann. Bot. 112, 1149–1158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng, Z. et al. Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ. Pollut. 158, 3539–3545 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Choquette, N. E., Ainsworth, E. A., Bezodis, W. & Cavanagh, A. P. Ozone tolerant maize hybrids maintain Rubisco content and activity during long‐term exposure in the field. Plant. Cell Environ. 43, 3033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ainsworth, E. A. Understanding and improving global crop response to ozone pollution. Plant J. 90, 886–897 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Dai, L., Kobayashi, K., Nouchi, I., Masutomi, Y. & Feng, Z. Quantifying determinants of ozone detoxification by apoplastic ascorbate in peach (Prunus persica) leaves using a model of ozone transport and reaction. Glob. Change Biol. 26, 3147–3162 (2020).

    Article  ADS  Google Scholar 

  45. Mashaheet, A. M. et al. Differential ozone responses identified among key rust-susceptible wheat genotypes. Agronomy 10, 1853 (2020).

    Article  CAS  Google Scholar 

  46. Agathokleous, E. et al. Ethylenediurea protects against ozone phytotoxicity not by adding nitrogen or controlling stomata in a stomata-unresponsive hybrid poplar. Sci. Total Environ. 875, 162672 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Driedonks, N., Rieu, I. & Vriezen, W. H. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod. 29, 67–79 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lei, D., Tan, L., Liu, F., Chen, L. & Sun, C. Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.). Plant Sci. 201–202, 121–127 (2013).

    Article  PubMed  Google Scholar 

  49. Kilasi, N. L. et al. Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front. Plant Sci. 871, 1578 (2018).

    Article  Google Scholar 

  50. Chang-lan, Z. et al. QTL for heat-tolerance at grain filling stage in rice. Rice Sci. 12, 33–38 (2005).

    Google Scholar 

  51. Lafarge, T. et al. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS ONE 12, e0171254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ps, S. et al. High-resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice 10, 28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Malumpong, C. et al. Backcross breeding for improvement of heat tolerance at reproductive phase in Thai rice (Oryza sativa L.) varieties. J. Agric. Sci. 158, 496–510 (2020).

    Article  CAS  Google Scholar 

  54. Chen, L. et al. QTL mapping and identification of candidate genes for heat tolerance at the flowering stage in rice. Front. Genet. 11, 1840 (2021).

    Article  Google Scholar 

  55. Raza, Q., Riaz, A., Bashir, K. & Sabar, M. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. Plant Mol. Biol. 104, 97–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Li, L. et al. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant. Cell Environ. 42, 2540–2553 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abou-Elwafa, S. F. & Shehzad, T. Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. 68, 711–728 (2020).

    Article  Google Scholar 

  58. Muhu-Din Ahmed, H. G. et al. Genome-wide association mapping for high temperature tolerance in wheat through 90k SNP array using physiological and yield traits. PLoS ONE 17, e0262569 (2022).

    Article  PubMed  Google Scholar 

  59. Van Inghelandt, D., Frey, F. P., Ries, D. & Stich, B. QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Sci. Rep. 9, 14418 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Longmei, N. et al. Genome wide association mapping for heat tolerance in sub-tropical maize. BMC Genom. 22, 154 (2021).

    Article  CAS  Google Scholar 

  61. Seetharam, K. et al. Genomic regions associated with heat stress tolerance in tropical maize (Zea mays L.). Sci. Rep. 11, 13730 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bazzer, S. K. & Purcell, L. C. Identification of quantitative trait loci associated with canopy temperature in soybean. Sci. Rep. 10, 17604 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kumar, J., Sen Gupta, D. & Djalovic, I. Breeding, genetics, and genomics for tolerance against terminal heat in lentil: current status and future directions. Legum. Sci. 2, e38 (2020).

    Article  Google Scholar 

  64. Masutomi, Y. et al. Breeding targets for heat-tolerant rice varieties in Japan in a warming climate. Mitig. Adapt. Strateg. Glob. Change 28, 2 (2023).

    Article  Google Scholar 

  65. Reynolds, M. & Langridge, P. Physiological breeding. Curr. Opin. Plant Biol. 31, 162–171 (2016).

    Article  PubMed  Google Scholar 

  66. Ashikari, M. & Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 11, 344–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, Y. et al. Pyramiding of ozone tolerance QTLs OzT8 and OzT9 confers improved tolerance to season-long ozone exposure in rice. Environ. Exp. Bot. 104, 26–33 (2014).

    Article  CAS  Google Scholar 

  68. Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder, J. I. Genetic strategies for improving crop yields. Nature 575, 109–118 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Feng, Z., Pang, J., Kobayashi, K., Zhu, J. & Ort, D. R. Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Glob. Change Biol. 17, 580–591 (2011).

  70. Wei, C. et al. Effects of irrigation methods and salinity on CO2 emissions from farmland soil during growth and fallow periods. Sci. Total Environ. 752, 141639 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Mao, B. et al. Response of carbon, nitrogen and phosphorus concentration and stoichiometry of plants and soils during a soybean growth season to O3 stress and straw return in Northeast China. Sci. Total Environ. 822, 153573 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Gou, Z., Yin, W. & Chai, Q. Straw and residual film management enhances crop yield and weakens CO2 emissions in wheat–maize intercropping system. Sci. Rep. 11, 14077 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fares, A. et al. Carbon dioxide emission in relation with irrigation and organic amendments from a sweet corn field. J. Environ. Sci. Health. B 52, 387–394 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Xu, Z. et al. Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta 239, 421–435 (2013).

    Article  PubMed  Google Scholar 

  75. Changey, F., Bagard, M., Souleymane, M. & Lerch, T. Z. Cascading effects of elevated ozone on wheat rhizosphere microbial communities depend on temperature and cultivar sensitivity. Environ. Pollut. 242, 113–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Kou, T. J. et al. Differential root responses in two cultivars of winter wheat (Triticum aestivum L.) to elevated ozone concentration under fully open-air field conditions. J. Agron. Crop Sci. 204, 325–332 (2018).

    Article  CAS  Google Scholar 

  77. Broberg, M. C., Daun, S. & Pleijel, H. Ozone induced loss of seed protein accumulation is larger in soybean than in wheat and rice. Agronomy 10, 357 (2020).

    Article  CAS  Google Scholar 

  78. Feng, Z., Shang, B., Li, Z., Calatayud, V. & Agathokleous, E. Ozone will remain a threat for plants independently of nitrogen load. Funct. Ecol. 33, 1854–1870 (2019).

    Article  Google Scholar 

  79. Broberg, M. C., Uddling, J., Mills, G. & Pleijel, H. Fertilizer efficiency in wheat is reduced by ozone pollution. Sci. Total Environ. 607–608, 876–880 (2017).

    Article  ADS  PubMed  Google Scholar 

  80. Peng, J., Xu, Y., Shang, B., Qu, L. & Feng, Z. Impact of ozone pollution on nitrogen fertilization management during maize (Zea mays L.) production. Environ. Pollut. 266, 115158 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Kimball, B. A. et al. Elevated CO2, drought and soil nitrogen effects on wheat grain quality. New Phytol. 150, 295–303 (2001).

    Article  CAS  Google Scholar 

  82. Liu, B., Wang, X., Ma, L., Chadwick, D. & Chen, X. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: a meta-analysis. Environ. Pollut. 269, 116143 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Helman, D. & Bonfil, D. J. Six decades of warming and drought in the world’s top wheat-producing countries offset the benefits of rising CO2 to yield. Sci. Rep. 12, 7921 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mayer, A., Hausfather, Z., Jones, A. D. & Silver, W. L. The potential of agricultural land management to contribute to lower global surface temperatures. Sci. Adv. 4, eaaq0932 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu, P. et al. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change 12, 1016–1023 (2022).

    Article  ADS  CAS  Google Scholar 

  86. Yang, T., Siddique, K. H. M. & Liu, K. Cropping systems in agriculture and their impact on soil health-A review. Glob. Ecol. Conserv. 23, e01118 (2020).

    Article  Google Scholar 

  87. Bettles, J. et al. Agroforestry and non-state actors: a review. For. Policy Econ. 130, 102538 (2021).

    Article  Google Scholar 

  88. Telwala, Y. Unlocking the potential of agroforestry as a nature-based solution for localizing sustainable development goals: a case study from a drought-prone region in rural India. Nat. Based Solut. 3, 100045 (2023).

    Article  Google Scholar 

  89. Apuri, I., Peprah, K. & Achana, G. T. W. Climate change adaptation through agroforestry: the case of Kassena Nankana West District, Ghana. Environ. Dev. 28, 32–41 (2018).

    Article  Google Scholar 

  90. Xie, W. et al. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature 616, 300–305 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Chen, X. et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature 618, 94–101 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Castle, S. E., Miller, D. C., Merten, N., Ordonez, P. J. & Baylis, K. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: a systematic map. Environ. Evid. 11, 10 (2022).

    Article  Google Scholar 

  93. Ghale, B., Mitra, E., Sodhi, H. S., Verma, A. K. & Kumar, S. Carbon sequestration potential of agroforestry systems and its potential in climate change mitigation. Water Air Soil Pollut. 233, 228 (2022).

    Article  ADS  CAS  Google Scholar 

  94. Dittmer, K. M. et al. Agroecology can promote climate change adaptation outcomes without compromising yield in smallholder systems. Environ. Manage. 72, 333–342 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rising, J. & Devineni, N. Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nat. Commun. 11, 4991 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, J. et al. Diversity increases yield but reduces harvest index in crop mixtures. Nat. Plants 7, 893–898 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  98. Bellora, C., Blanc, É., Bourgeon, J.-M. & Strobl, E. Estimating The Impact of Crop Diversity on Agricultural Productivity in South Africa Working Paper 23496, 1–32 (NBER, 2017); https://doi.org/10.3386/w23496

  99. Stefan, L., Hartmann, M., Engbersen, N., Six, J. & Schöb, C. Positive effects of crop diversity on productivity driven by changes in soil microbial composition. Front. Microbiol. 12, 808 (2021).

    Article  Google Scholar 

  100. Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M. & Liebman, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS ONE 7, e47149 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Donfouet, H. P. P., Barczak, A., Détang-Dessendre, C. & Maigné, E. Crop production and crop diversity in France: a spatial analysis. Ecol. Econ. 134, 29–39 (2017).

    Article  Google Scholar 

  102. Li, C. et al. Crop diversity for yield increase. PLoS ONE 4, e8049 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  103. Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27, 4697–4710 (2021).

    Article  CAS  Google Scholar 

  104. Tack, J. et al. Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).

    Article  Google Scholar 

  105. Webber, H. et al. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: a multi-model comparison. Field Crops Res. 202, 21–35 (2017).

    Article  Google Scholar 

  106. Nyawade, S. O. et al. Intercropping optimizes soil temperature and increases crop water productivity and radiation use efficiency of rainfed potato. Am. J. Potato Res. 96, 457–471 (2019).

    Article  CAS  Google Scholar 

  107. Amthor, J. S. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res. 73, 1–34 (2001).

    Article  Google Scholar 

  108. Díaz, R. A., Magrín, G. O., Travasso, M. I. & Rodríguez, R. O. Climate change and its impact on the properties of agricultural soils in the Argentinean Rolling Pampas. Clim. Res. 9, 25–30 (1997).

    Article  Google Scholar 

  109. Tubiello, F. N., Donatelli, M., Rosenzweig, C. & Stockle, C. O. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur. J. Agron. 13, 179–189 (2000).

    Article  Google Scholar 

  110. Paustian, K., Elliott, E. T., Peterson, G. A. & Killian, K. Modelling climate, CO2 and management impacts on soil carbon in semi-arid agroecosystems. Plant Soil 187, 351–365 (1995).

    Article  Google Scholar 

  111. Teixeira, E. et al. Limited potential of crop management for mitigating surface ozone impacts on global food supply. Atmos. Environ. 45, 2569–2576 (2011).

    Article  ADS  CAS  Google Scholar 

  112. Ewert, F., Van Oijen, M. & Porter, J. R. Simulation of growth and development processes of spring wheat in response to CO2 and ozone for different sites and years in Europe using mechanistic crop simulation models. Eur. J. Agron. 10, 231–247 (1999).

    Article  Google Scholar 

  113. Tao, F., Feng, Z., Tang, H., Chen, Y. & Kobayashi, K. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination. Atmos. Environ. 153, 182–193 (2017).

    Article  ADS  CAS  Google Scholar 

  114. Tai, A. P. K., Sadiq, M., Pang, J. Y. S., Yung, D. H. Y. & Feng, Z. Impacts of surface ozone pollution on global crop yields: comparing different ozone exposure metrics and incorporating co-effects of CO2. Front. Sustain. Food Syst. 5, 63 (2021).

    Article  Google Scholar 

  115. Dijkstra, F. A. et al. Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments. Front. Ecol. Environ. 10, 520–527 (2012).

    Article  Google Scholar 

  116. Agathokleous, E. et al. Ethylenediurea (EDU) spray effects on willows (Salix sachalinensis F. Schmid) grown in ambient or ozone-enriched air: implications for renewable biomass production. J. For. Res. 33, 397–422 (2022).

    Article  CAS  Google Scholar 

  117. Agathokleous, E. et al. Ethylenediurea (EDU) effects on Japanese larch: an one growing season experiment with simulated regenerating communities and a four growing season application to individual saplings. J. For. Res. 32, 2047–2057 (2021).

    Article  CAS  Google Scholar 

  118. Saitanis, C. J. & Agathokleous, E. Exogenous application of chemicals for protecting plants against ambient ozone pollution: what should come next? Curr. Opin. Environ. Sci. Health 19, 100215 (2021).

    Article  PubMed  Google Scholar 

  119. Tiwari, S. Ethylenediurea as a potential tool in evaluating ozone phytotoxicity: a review study on physiological, biochemical and morphological responses of plants. Environ. Sci. Pollut. Res. 24, 14019–14039 (2017).

    Article  CAS  Google Scholar 

  120. Agathokleous, E. Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O3 phytotoxicity. Ecotoxicol. Environ. Saf. 142, 530–537 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Lakaew, K., Akeprathumchai, S. & Thiravetyan, P. Foliar spraying of calcium acetate alleviates yield loss in rice (Oryza sativa L.) by induced anti-oxidative defence system under ozone and heat stresses. Ann. Appl. Biol. 178, 414–426 (2021).

    Article  CAS  Google Scholar 

  122. Salvatori, E., Fusaro, L. & Manes, F. Effects of the antiozonant ethylenediurea (EDU) on Fraxinus ornus L.: the role of drought. Forests 8, 320 (2017).

    Article  Google Scholar 

  123. Mina, U., Smiti, K. & Yadav, P. Thermotolerant wheat cultivar (Triticum aestivum L. var. WR544) response to ozone, EDU, and particulate matter interactive exposure. Environ. Monit. Assess. 193, 318 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Surabhi, S., Pande, V. & Pandey, V. Ethylenediurea (EDU) mediated protection from ambient ozone-induced oxidative stress in wheat (Triticum aestivum L.) under a high CO2 environment. Atmos. Pollut. Res. 13, 101503 (2022).

    Article  CAS  Google Scholar 

  125. Kannaujia, R., Singh, P., Prasad, V. & Pandey, V. Evaluating impacts of biogenic silver nanoparticles and ethylenediurea on wheat (Triticum aestivum L.) against ozone-induced damages. Environ. Res. 203, 111857 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Picchi, V., Gobbi, S., Fattizzo, M., Zefelippo, M. & Faoro, F. Chitosan nanoparticles loaded with N-acetyl cysteine to mitigate ozone and other possible oxidative stresses in durum wheat. Plants 10, 691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A. & Brown, P. H. Biostimulants in plant science: a global perspective. Front. Plant Sci. 7, 2049 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Godínez-Mendoza, P. L. et al. Plant hormesis: revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. Sci. Total Environ. 894, 164883 (2023).

    Article  ADS  PubMed  Google Scholar 

  129. Majkowska-Gadomska, J., Dobrowolski, A., Jadwisieńczak, K. K., Kaliniewicz, Z. & Francke, A. Effect of biostimulants on the growth, yield and nutritional value of Capsicum annuum grown in an unheated plastic tunnel. Sci. Rep. 11, 22335 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Calvo, P., Nelson, L. & Kloepper, J. W. Agricultural uses of plant biostimulants. Plant Soil 383, 3–41 (2014).

    Article  CAS  Google Scholar 

  131. Nephali, L. et al. Biostimulants for plant growth and mitigation of abiotic stresses: a metabolomics perspective. Metabolites 10, 505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shahrajabian, M. H., Chaski, C., Polyzos, N. & Petropoulos, S. A. Biostimulants application: a low input cropping management tool for sustainable farming of vegetables. Biomolecules 11, 698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Macias-Benitez, S. et al. Biostimulant capacity of an enzymatic extract from rice bran against ozone-induced damage in Capsicum annum. Front. Plant Sci. 12, 2573 (2021).

    Article  Google Scholar 

  134. Vannini, A., Fedeli, R., Guarnieri, M. & Loppi, S. Foliar application of wood distillate alleviates ozone-induced damage in lettuce (Lactuca sativa L.). Toxics 10, 178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, L. et al. Protecting tobacco plants from O3 injury by Bacillus velezensis with production of acetoin. Physiol. Plant. 170, 158–171 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Agathokleous, E. et al. Exogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: a meta-analysis. Environ. Res. 200, 111746 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Arnao, M. B. & Hernández-Ruiz, J. Functions of melatonin in plants: a review. J. Pineal Res. 59, 133–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Arnao, M. B. & Hernández-Ruiz, J. Melatonin as a plant biostimulant in crops and during post-harvest: a new approach is needed. J. Sci. Food Agric. 101, 5297–5304 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Westman, S. M., Kloth, K. J., Hanson, J., Ohlsson, A. B. & Albrectsen, B. R. Defence priming in Arabidopsis – a meta-analysis. Sci. Rep. 9, 13309 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  141. Christou, A., Agathokleous, E. & Fotopoulos, V. Safeguarding food security: hormesis-based plant priming to the rescue. Curr. Opin. Environ. Sci. Health 28, 100374 (2022).

    Article  Google Scholar 

  142. Savvides, A., Ali, S., Tester, M. & Fotopoulos, V. Chemical priming of plants against multiple abiotic stresses: mission possible. Trends Plant Sci. 21, 329–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L. & Patil, B. S. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 10, 5037 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Farooq, M. et al. Influence of seed priming techniques on grain yield and economic returns of bread wheat planted at different spacings. Crop Pasture Sci. 71, 725–738 (2020).

    Article  CAS  Google Scholar 

  145. Sime, G. & Aune, J. B. On-farm seed priming and fertilizer micro-dosing: agronomic and economic responses of maize in semi-arid Ethiopia. Food Energy Secur. 9, e190 (2020).

    Article  Google Scholar 

  146. Atefi, A., Ge, Y., Pitla, S. & Schnable, J. Robotic technologies for high-throughput plant phenotyping: contemporary reviews and future perspectives. Front. Plant Sci. 12, 1082 (2021).

    Article  Google Scholar 

  147. Balafoutis, A. et al. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 9, 1339 (2017).

    Article  Google Scholar 

  148. Morisse, M. et al. A European perspective on opportunities and demands for field-based crop phenotyping. Field Crops Res. 276, 108371 (2022).

    Article  Google Scholar 

  149. Watt, M. et al. Phenotyping: new windows into the plant for breeders. Annu. Rev. Plant Biol. 71, 689–712 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, S. et al. Climatic role of terrestrial ecosystem under elevated CO2: a bottom-up greenhouse gases budget. Ecol. Lett. 21, 1108–1118 (2018).

    Article  ADS  PubMed  Google Scholar 

  151. Van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344, 508–509 (2014).

    Article  ADS  PubMed  Google Scholar 

  152. Cheng, L. et al. Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J. 11, 1825 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Qiu, Y. et al. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv. 7, abe9256 (2021).

    Article  ADS  Google Scholar 

  154. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  155. Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL 5, 15–32 (2019).

    Article  ADS  CAS  Google Scholar 

  156. Crystal-Ornelas, R., Thapa, R. & Tully, K. L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: a meta-analysis. Agric. Ecosyst. Environ. 312, 107356 (2021).

    Article  CAS  Google Scholar 

  157. Diacono, M. & Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 30, 401–422 (2010).

    Article  CAS  Google Scholar 

  158. Aguilera, E. et al. Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agric. Syst. 181, 102809 (2020).

    Article  Google Scholar 

  159. Damm, A. et al. Response times of remote sensing measured sun-induced chlorophyll fluorescence, surface temperature and vegetation indices to evolving soil water limitation in a crop canopy. Remote Sens. Environ. 273, 112957 (2022).

    Article  Google Scholar 

  160. Drusch, M. et al. The FLuorescence EXplorer mission concept—ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 55, 1273–1284 (2017).

    Article  ADS  Google Scholar 

  161. Kumar, S. et al. in Natural Resources Conservation and Advances for Sustainability (eds Jhariya, M.K. et al.) 91–135 (Elsevier, 2022).

  162. Alexander, P. et al. High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. Nat. Food 4, 84–95 (2022).

    Article  PubMed  Google Scholar 

  163. Fowler, D. et al. Atmospheric composition change: ecosystems–atmosphere interactions. Atmos. Environ. 43, 5193–5267 (2009).

    Article  ADS  CAS  Google Scholar 

  164. Gerosa, G. et al. Comparison of seasonal variations of ozone exposure and fluxes in a Mediterranean Holm oak forest between the exceptionally dry 2003 and the following year. Environ. Pollut. 157, 1737–1744 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Lobell, D. B., Bonfils, C. J., Kueppers, L. M. & Snyder, M. A. Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett. 35, 9705 (2008).

    Article  ADS  Google Scholar 

  166. Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).

    Article  ADS  Google Scholar 

  167. Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J. & Ewert, F. Heat stress in cereals: mechanisms and modelling. Eur. J. Agron. 64, 98–113 (2015).

    Article  Google Scholar 

  168. Mcgill, B. M. et al. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. Glob. Change Biol. 24, 5948–5960 (2018).

    Article  ADS  Google Scholar 

  169. Cayuela, M. L. et al. Direct nitrous oxide emissions in Mediterranean climate cropping systems: emission factors based on a meta-analysis of available measurement data. Agric. Ecosyst. Environ. 238, 25–35 (2017).

    Article  CAS  Google Scholar 

  170. Li, J., Mahalov, A. & Hyde, P. Impacts of agricultural irrigation on ozone concentrations in the Central Valley of California and in the contiguous United States based on WRF-Chem simulations. Agric. For. Meteorol. 221, 34–49 (2016).

    Article  ADS  Google Scholar 

  171. Massad, R. S. et al. Reviews and syntheses: influences of landscape structure and land uses on local to regional climate and air quality. Biogeosciences 16, 2369–2408 (2019).

    Article  ADS  CAS  Google Scholar 

  172. Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).

    Article  ADS  Google Scholar 

  173. Neupane, R. P. & Kumar, S. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed. J. Hydrol. 529, 418–429 (2015).

    Article  ADS  Google Scholar 

  174. Chisola, M. N., van der Laan, M. & Bristow, K. L. A landscape hydrology approach to inform sustainable water resource management under a changing environment. A case study for the Kaleya River Catchment, Zambia. J. Hydrol. Reg. Stud. 32, 100762 (2020).

    Article  Google Scholar 

  175. Arenas-Corraliza, M. G., López-Díaz, M. L. & Moreno, G. Winter cereal production in a Mediterranean silvoarable walnut system in the face of climate change. Agric. Ecosyst. Environ. 264, 111–118 (2018).

    Article  Google Scholar 

  176. Kanzler, M., Böhm, C., Mirck, J., Schmitt, D. & Veste, M. Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system. Agrofor. Syst. 93, 1821–1841 (2018).

    Article  Google Scholar 

  177. Liste, H. H. & White, J. C. Plant hydraulic lift of soil water – implications for crop production and land restoration. Plant Soil. 313, 1–17 (2008).

    Article  CAS  Google Scholar 

  178. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) Topic 1 (Cambridge Univ. Press, 2014).

  179. Bezner Kerr, R. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H. O. et al.) Ch. 5 (IPCC, Cambridge Univ. Press, 2022).

  180. Mills, G. et al. Ozone pollution will compromise efforts to increase global wheat production. Glob. Change Biol. 24, 3560–3574 (2018).

    Article  ADS  Google Scholar 

  181. Schiferl, L. D. & Heald, C. L. Particulate matter air pollution may offset ozone damage to global crop production. Atmos. Chem. Phys. 18, 5953–5966 (2018).

    Article  ADS  CAS  Google Scholar 

  182. Chenu, K. et al. Contribution of crop models to adaptation in wheat. Trends Plant Sci. 22, 472–490 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2014).

    Article  ADS  Google Scholar 

  184. Tang, H., Takigawa, M., Liu, G., Zhu, J. & Kobayashi, K. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Glob. Change Biol. 19, 2739–2752 (2013).

    Article  ADS  Google Scholar 

  185. Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    Article  ADS  Google Scholar 

  186. Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3, 17102 (2017).

    Article  PubMed  Google Scholar 

  187. Broberg, M. C., Feng, Z., Xin, Y. & Pleijel, H. Ozone effects on wheat grain quality – a summary. Environ. Pollut. 197, 203–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Emberson, L. D. et al. Ozone effects on crops and consideration in crop models. Eur. J. Agron. 100, 19–34 (2018).

    Article  CAS  Google Scholar 

  189. Droutsas, I., Challinor, A. J., Arnold, S. R., Mikkelsen, T. N. & Hansen, E. M. Ø. A new model of ozone stress in wheat including grain yield loss and plant acclimation to the pollutant. Eur. J. Agron. 120, 126125 (2020).

    Article  CAS  Google Scholar 

  190. Guarin, J. R., Kassie, B., Mashaheet, A. M., Burkey, K. & Asseng, S. Modeling the effects of tropospheric ozone on wheat growth and yield. Eur. J. Agron. 105, 13–23 (2019).

    Article  CAS  Google Scholar 

  191. Agathokleous, E. et al. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. Sci. Total Environ. 649, 61–74 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  192. Heath, R. L., Lefohn, A. S. & Musselman, R. C. Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose. Atmos. Environ. 43, 2919–2928 (2009).

    Article  ADS  CAS  Google Scholar 

  193. Mohammadi, S., Rydgren, K., Bakkestuen, V. & Gillespie, M. A. K. Impacts of recent climate change on crop yield can depend on local conditions in climatically diverse regions of Norway. Sci. Rep. 13, 3633 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  194. Altieri, M. A. & Nicholls, C. I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change. 140, 33–45 (2017).

    Article  ADS  Google Scholar 

  195. Schiermeier, Q. Eat less meat: UN climate-change report calls for change to human diet. Nature 572, 291–292 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  196. Liu, X. et al. Dietary shifts can reduce premature deaths related to particulate matter pollution in China. Nat. Food 2, 997–1004 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Xia, L. & Yan, X. Maximizing Earth’s feeding capacity. Nat. Food 4, 353–354 (2023).

    Article  PubMed  Google Scholar 

  198. Schipper, E. L. F., Dubash, N. K. & Mulugetta, Y. Climate change research and the search for solutions: rethinking interdisciplinarity. Climatic Change 168, 18 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  199. Lang, D. J. et al. Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain. Sci. 7, 25–43 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Sino-German Mobility Programme (M-0105) and the National Natural Science Foundation of China (grant nos. 42130714, 42207123 and 42107270). Partial funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2070 – 390732324 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

E.A., M.F. and Z.F. designed the study. All authors contributed parts of different sections and thus contributed to writing the initial draft. E.A. used the contributed parts to synthesize an integrated manuscript. E.A., M.F. and Z.F. edited the inititial draft and generated the first working draft of the manuscript. All authors revised the paper, read the final manuscript and approved its submission.

Corresponding author

Correspondence to Zhaozhong Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agathokleous, E., Frei, M., Knopf, O.M. et al. Adapting crop production to climate change and air pollution at different scales. Nat Food 4, 854–865 (2023). https://doi.org/10.1038/s43016-023-00858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00858-y

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene