Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interfacial tuning of electrocatalytic Ag surfaces for fragment-based electrophile coupling

Abstract

Construction of C‒C bonds in medicinal chemistry frequently draws on the reductive coupling of organic halides with ketones or aldehydes. Catalytic C(sp3)‒C(sp3) bond formation, however, is constrained by the competitive side reactivity of radical intermediates following sp3 organic halide activation. Here, an alternative model deploys catalytic Ag surfaces for reductive fragment-based electrophile coupling compatible with sp3 organic halides. We use in situ spectroscopy, electrochemical analyses and simulation to uncover the catalytic interfacial structure and guide reaction development. Specifically, Mg(OAc)2 outcompetes the interaction between Ag and the aldehyde, thereby tuning the Ag surface for selective product formation. Data are consistent with an increased population of Mg-bound aldehyde facilitating the addition of a carbon-centred radical (product of Ag-electrocatalysed organic halide reduction) to the carbonyl. Electron transfer from Ag to the resultant alkoxy radical yields the desired alcohol. Molecular interfacial tuning at reusable catalytic electrodes will accelerate development of sustainable organic synthetic methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrocatalysis enables facile organic halide activation.
Fig. 2: Electrochemical and reactivity data for Ag-catalysed electrophile coupling.
Fig. 3: Spectroscopic data collected during Ag-electrocatalysed electrophile coupling reactions.
Fig. 4: Summary of proposed mechanisms in the absence and presence of Mg(OAc)2.
Fig. 5: Investigated scope of the transformation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the article (and its Supplementary Information) or available from the corresponding author on reasonable request.

References

  1. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Huffman, B. J. et al. Electronic complementarity permits hindered butenolide heterodimerization and discovery of novel cGAS/STING pathway antagonists. Nat. Chem. 12, 310–317 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Wei, W., Cherukupalli, S., Jing, L., Liu, X. & Zhan, P. F. sp3: a new parameter for drug-likeness. Drug Discov. Today 25, 1839–1845 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Rappoport, Z. & Marek, I. (eds) The Chemistry of Organomagnesium Compounds (Wiley, 2008).

  5. Wu, G. & Huang, M. Organolithium reagents in pharmaceutical asymmetric processes. Chem. Rev. 106, 2596–2616 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists bread and butter. J. Med. Chem. 59, 4385–4402 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Nicolaou, K. C., Ellery, S. P. & Chen, J. Samarium diiodide mediated reactions in total synthesis. Angew. Chem. Int. Ed. Engl. 48, 7140–7165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szostak, M., Fazakerley, N. J., Parmar, D. & Procter, D. J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev. 114, 5959–6039 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Gil, A., Albericio, F. & Álvarez, M. Role of the Nozaki-Hiyama-Takai-Kishi reaction in the synthesis of natural products. Chem. Rev. 117, 8420–8446 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Garcia, K. J., Gilbert, M. M. & Weix, D. J. Nickel-catalyzed addition of aryl bromides to aldehydes to form hindered secondary alcohols. J. Am. Chem. Soc. 141, 1823–1827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Swyka, R. A., Zhang, W., Richardson, J., Ruble, J. C. & Krische, M. J. Rhodium-catalyzed aldehyde arylation via formate-mediated transfer hydrogenation: beyond metallic reductants in Grignard/Nozaki-Hiyami-Kishi-type addition. J. Am. Chem. Soc. 141, 1828–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kadam, A. et al. Comparative performance evaluation and systematic screening of solvents in a range of Grignard reactions. Green. Chem. 15, 1880–1888 (2013).

    Article  CAS  Google Scholar 

  13. Curran, D. P., Diederichsen, U. & Palovich, M. Radical cyclizations of acylgermanes. New reagent equivalents of the carbonyl radical acceptor synthon. J. Am. Chem. Soc. 119, 4797–4804 (1997).

    Article  CAS  Google Scholar 

  14. Wilsey, S., Dowd, P. & Houk, K. N. Effect of alkyl substituents and ring size on alkoxy radical cleavage reactions. J. Org. Chem. 64, 8801–8811 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Salamone, M. & Bietti, M. Reaction pathways of alkoxyl radicals. The role of solvent effects on C–C bond fragmentation and hydrogen atom transfer reactions. Synlett. 25, 1803–1816 (2014).

    Article  CAS  Google Scholar 

  16. Crabtree, R. H. in The Organometallic Chemistry of the Transition Metals (ed. Crabtree, R. H.) 185–203 (Wiley, 2014).

  17. Zhang, W. & Lin, S. Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism. J. Am. Chem. Soc. 142, 20661–20670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, W. et al. Electrochemically driven cross-electrophile coupling of alkyl halides. Nature 604, 292–297 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Wu, H. et al. Cathodic carbonyl alkylation of aryl ketones or aldehydes with unactivated alkyl halides. Org. Lett. 24, 9342–9347 (2022).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  20. Roth, H., Romero, N. & Nicewicz, D. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett. 27, 714–723 (2015).

    Article  Google Scholar 

  21. Gao, Y. et al. Electrochemical Nozaki-Hiyama-Kishi coupling: scope, applications, and mechanism. J. Am. Chem. Soc. 143, 9478–9488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rondinini, S., Mussini, P. R., Muttini, P. & Sello, G. Silver as a powerful electrocatalyst for organic halide reduction: the critical role of molecular structure. Electrochim. Acta 46, 3245–3258 (2001).

    Article  CAS  Google Scholar 

  23. Isse, A. A., De Giusti, A., Gennaro, A., Falciola, L. & Mussini, P. R. Electrochemical reduction of benzyl halides at a silver electrode. Electrochim. Acta 51, 4956–4964 (2006).

    Article  CAS  Google Scholar 

  24. Isse, A. A., Gottardello, S., Durante, C. & Gennaro, A. Dissociative electron transfer to organic chlorides: electrocatalysis at metal cathodes. Phys. Chem. Chem. Phys. 10, 2409–2416 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, Y. F. et al. Bridging the gap between electrochemical and organometallic activation: benzyl chloride reduction at silver cathodes. J. Am. Chem. Soc. 132, 17199–17210 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Strawsine, L. M., Mubarak, M. S. & Peters, D. G. Use of silver cathodes to promote the direct reduction and intramolecular cyclization of ω-halo-1-phenyl-1-alkynes in dimethylformamide. J. Electrochem. Soc. 160, G3030–G3037 (2013).

    Article  CAS  Google Scholar 

  27. Klymenko, O. V. et al. Uncovering the missing link between molecular electrochemistry and electrocatalysis: mechanism of the reduction of benzyl chloride at silver cathodes. Chem. Electro. Chem. 1, 227–240 (2014).

    Google Scholar 

  28. Strawsine, L. M., Sengupta, A., Raghavachari, K. & Peters, D. G. Direct reduction of alkyl monohalides at silver in dimethylformamide: effects of position and identity of the halogen. Chem. Electro. Chem. 2, 726–736 (2015).

    CAS  Google Scholar 

  29. Hartwig, J. F. in Organotransition Metal Chemistry: From Bonding to Catalysis (ed. Hartwig, J. F.) 301–320 (Univ. Science Books, 2010).

  30. Diccianni, J. B., Katigbak, J., Hu, C. & Diao, T. Mechanistic characterization of (xantphos)Ni(I)-mediated alkyl bromide activation: oxidative addition, electron transfer, or halogen-atom abstraction. J. Am. Chem. Soc. 141, 1788–1796 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Sandford, C., Fries, L. R., Ball, T. E., Minteer, S. D. & Sigman, M. S. Mechanistic studies into the oxidative addition of Co(I) complexes: combining electroanalytical techniques with parameterization. J. Am. Chem. Soc. 141, 18877–18889 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Niu, D. F. et al. Electrocatalytic carboxylation of aliphatic halides at silver cathode in acetonitrile. Tetrahedron 64, 10517–10520 (2008).

    Article  CAS  Google Scholar 

  33. Medvedev, J. J., Medvedeva, X. V., Engelhardt, H. & Klinkova, A. Relative activity of metal cathodes towards electroorganic coupling of CO2 with benzylic halides. Electrochim. Acta 387, 138528 (2021).

    Article  CAS  Google Scholar 

  34. Corbin, N., Yang, D. T., Lazouski, N., Steinberg, K. & Manthiram, K. Suppressing carboxylate nucleophilicity with inorganic salts enables selective electrocarboxylation without sacrificial anodes. Chem. Sci. 12, 12365–12376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harwood, S. J. et al. Modular terpene synthesis enabled by mild electrochemical couplings. Science 375, 745–752 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Palkowitz, M. D. et al. Overcoming limitations in decarboxylative arylation via Ag-Ni electrocatalysis. J. Am. Chem. Soc. 144, 17709–17720 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Foresti, M. L., Innocenti, M., Forni, F. & Guidelli, R. Electrosorption valency and partial charge transfer in halide and sulfide adsorption on Ag(111). Langmuir 14, 7008–7016 (1998).

    Article  CAS  Google Scholar 

  38. Isse, A. A. & Gennaro, A. Electrocatalytic carboxylation of benzyl chlorides at silver cathodes in acetonitrile. Chem. Commun. 23, 2798–2799 (2002).

  39. Isse, A. A. et al. Electrocatalysis and electron transfer mechanisms in the reduction of organic halides at Ag. J. Appl. Electrochem. 39, 2217–2225 (2009).

    Article  CAS  Google Scholar 

  40. Isse, A. A., Mussini, P. R. & Gennaro, A. New insights into electrocatalysis and dissociative electron transfer mechanisms: the case of aromatic bromides. J. Phys. Chem. C. 113, 14983–14992 (2009).

    Article  CAS  Google Scholar 

  41. Syroeshkin, M. A. et al. Electrochemical behavior of N-oxyphthalimides: cascades initiating self-sustaining catalytic reductive N—O bond cleavage. J. Phys. Org. Chem. 30, e3744 (2017).

    Article  Google Scholar 

  42. Douch, J. & Mousset, G. Electrochemical reduction of carbonyl compounds in non-aqueous solvent in the presence of EuCl3·6H2O. Can. J. Chem. 65, 549–556 (1987).

    Article  CAS  Google Scholar 

  43. Ischay, M. A., Anzovino, M. E., Du, J. & Yoon, T. P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 130, 12886–12887 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Fournier, F. & Fournier, M. Transferts d’électrons assistés par les métaux de transition:influence de la nature du cation métallique sur la réduction de composés carbonylés en milieu aprotique. Can. J. Chem. 64, 881–890 (2011).

    Article  Google Scholar 

  45. Andrieux, C. P., Grzeszczuk, M. & Savéant, J.-M. Electrochemical generation and detection of transient intermediates: dimerizing species. J. Electroanal. Chem. Interfacial Electrochem. 318, 369–372 (1991).

    Article  CAS  Google Scholar 

  46. Vasilenko, V., Blasius, C. K., Wadepohl, H., Gade, L. H. & Li, R. Borohydride intermediates pave the way for magnesium-catalysed enantioselective ketone reduction. Chem. Commun. 56, 1203–1206 (2020).

    Article  CAS  Google Scholar 

  47. Reetz, M. T., Harmat, N. & Mahrwald, R. Ligand effects in Grignard additions. Angew. Chem. Int. Ed. Engl. 31, 342–344 (1992).

    Article  Google Scholar 

  48. Fournier, V., Marcus, P. & Olefjord, I. Oxidation of magnesium. Surf. Interface Anal. 34, 494–497 (2002).

    Article  CAS  Google Scholar 

  49. Hou, S. et al. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 374, 172–178 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Osawa, M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull. Chem. Soc. Jpn 70, 2861–2880 (1997).

    Article  CAS  Google Scholar 

  51. Osawa, M. Diffraction and Spectroscopic Methods in Electrochemistry (Advances in Electrochemical Science and Engineering (eds Alkire, R. C. et al.) 269–314 (Wiley-VCH, 2006).

  52. Miyake, H., Ye, S. & Osawa, M. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry. Electrochem. Commun. 4, 973–977 (2002).

    Article  CAS  Google Scholar 

  53. Yaguchi, M., Uchida, T., Motobayashi, K. & Osawa, M. Speciation of adsorbed phosphate at gold electrodes: a combined surface-enhanced infrared absorption spectroscopy and DFT study. J. Phys. Chem. Lett. 7, 3097–3102 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Ros, R., Leenarda, M., Boschi, T. & Roulet, R. Cyanobenzylpalladium(H) complexes. Synthesis and spectroscopic properties. Inorg. Chim. Acta 25, 61–64 (1977).

    Article  CAS  Google Scholar 

  55. Delley, M. F., Nichols, E. M. & Mayer, J. M. Interfacial acid-base equilibria and electric fields concurrently probed by in situ surface-enhanced infrared spectroscopy. J. Am. Chem. Soc. 143, 10778–10792 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Kuş, N., Sharma, A., Reva, I., Lapinski, L. & Fausto, R. Thermal and photoinduced control of relative populations of 4-methoxybenzaldehyde (p-anisaldehyde) conformers. J. Phys. Chem. A 114, 7716–7724 (2010).

    Article  PubMed  Google Scholar 

  57. Gunasekaran, S., Seshadri, S., Muthu, S., Kumaresan, S. & Arunbalaji, R. Vibrational spectroscopy investigation using ab initio and density functional theory on p-anisaldehyde. Spectrochim. Acta A 70, 550–556 (2008).

    Article  CAS  ADS  Google Scholar 

  58. Fathima, A. A., Umadevi, M. & Ramakrishnan, V. Changes in spectral features with varying mole fractions of anisaldehyde in binary mixtures. J. Raman Spectrosc. 38, 271–276 (2007).

    Article  CAS  ADS  Google Scholar 

  59. Bron, M. et al. Bridging the pressure and materials gap: in-depth characterisation and reaction studies of silver-catalysed acrolein hydrogenation. J. Catal. 234, 37–47 (2005).

    Article  CAS  Google Scholar 

  60. Wang, K. & Yang, B. Theoretical understanding on the selectivity of acrolein hydrogenation over silver surfaces: the non-Horiuti–Polanyi mechanism is the key. Catal. Sci. Technol. 7, 4024–4033 (2017).

    Article  CAS  Google Scholar 

  61. Wang, A. et al. In situ identification of intermediates of benzyl chloride reduction at a silver electrode by SERS coupled with DFT calculations. J. Am. Chem. Soc. 132, 9534–9536 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Gao, P. & Weaver, M. J. Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: benzene and monosubstituted benzenes adsorbed at gold electrodes. J. Phys. Chem. 89, 5040–5046 (1985).

    Article  CAS  Google Scholar 

  63. Cai, W. Bin et al. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy. Langmuir 14, 6992–6998 (1998).

    Article  CAS  Google Scholar 

  64. Pang, S. F., Wu, C. Q., Zhang, Q. N. & Zhang, Y. H. The structural evolution of magnesium acetate complex in aerosols by FTIR–ATR spectra. J. Mol. Struct. 1087, 46–50 (2015).

    Article  CAS  ADS  Google Scholar 

  65. Revunova, K. & Nikonov, G. I. Main group catalysed reduction of unsaturated bonds. Dalt. Trans. 44, 840–866 (2014).

    Article  Google Scholar 

  66. Falconnet, A., Magre, M., Maity, B., Cavallo, L. & Rueping, M. Asymmetric magnesium‐catalyzed hydroboration by metal‐ligand cooperative catalysis. Angew. Chem. Int. Ed. 58, 17567–17571 (2019).

    Article  CAS  Google Scholar 

  67. Chaussard, J. et al. Use of sacrificial anodes in electrochemical functionalization of organic halides. Synthesis 1990, 369–381 (1990).

    Article  Google Scholar 

  68. Klein, M. & Waldvogel, S. R. Counter electrode reactions—important stumbling blocks on the way to a working electro-organic synthesis. Angew. Chem. Int. Ed. 61, e202204140 (2022).

    Article  CAS  ADS  Google Scholar 

  69. Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boymond, L., Rottländer, M., Rard Cahiez, G. Â. & Knochel, P. Preparation of highly functionalized Grignard reagents by an iodine—magnesium exchange reaction and its application in solid-phase synthesis. Angew. Chem. Int. Ed. 37, 1701–1703 (1998).

    Article  CAS  Google Scholar 

  71. Lee, J. S., Velarde-Ortiz, R., Guijarro, A., Wurst, J. R. & Rieke, R. D. Low-temperature formation of functionalized Grignard reagents from direct oxidative addition of active magnesium to aryl bromides. J. Org. Chem. 65, 5428–5430 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Shimizu, K. I., Sato, R. & Satsuma, A. Direct C-C cross-coupling of secondary and primary alcohols catalyzed by a γ-alumina-supported silver subnanocluster. Angew. Chem. Int. Ed. 48, 3982–3986 (2009).

    Article  CAS  Google Scholar 

  73. Varshney, S., Bar-Ziv, R. & Zidki, T. On the remarkable performance of silver-based alloy nanoparticles in 4-nitrophenol catalytic reduction. Chem. Cat. Chem. 12, 4680–4688 (2020).

    CAS  Google Scholar 

  74. Savéant, J.-M. & Costentin, C. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry (Wiley, 2019).

  75. Wuttig, A., Ryu, J. & Surendranath, Y. Electrolyte competition controls surface binding of CO intermediates to CO2 reduction catalysts. J. Phys. Chem. C. 125, 17042–17050 (2021).

    Article  CAS  Google Scholar 

  76. Huo, S. J., Xue, X. K., Li, Q. X., Xu, S. F. & Cai, W. B. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy. J. Phys. Chem. B 110, 25721–25728 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Savéant, J.-M. & Vianello, E. Potential-sweep voltammetry: theoretical analysis of monomerization and dimerization mechanisms. Electrochim. Acta 12, 1545–1561 (1967).

    Article  Google Scholar 

  78. Savéant, J.-M. & Costentin, C. in Elements of Molecular and Bimolecular Electrochemistry (eds Savéant, J.-M. & Costentin, C.) 81–181 (Wiley, 2019).

  79. Tsierkezos, N. G. Investigation of the electrochemical reduction of benzophenone in aprotic solvents using the method of cyclic voltammetry. J. Solut. Chem. 36, 1301–1310 (2007).

    Article  CAS  Google Scholar 

  80. Wang, R. et al. Catalytic reduction of O2 by pyrazine derivatives. J. Phys. Chem. A 108, 1891–1899 (2004).

    Article  CAS  Google Scholar 

  81. Marouani, S., Louati, A. & Gross, M. Influence du solvant sur la reduction electrochimique du nitrate et de l’acetate d’uranyle. Electrochim. Acta 33, 147–155 (1988).

    Article  CAS  Google Scholar 

  82. Savéant, J.-M. & Vianello, E. Étude de la polarisation chimique en régime de variation linéaire du potentiel. Cas d’une désactivation spontanée, rapide et irréversible du produit de la réduction. C. R. Acad. Sci. 256, 2597–2600 (1963).

    Google Scholar 

  83. Savéant, J.-M. & Vianello, E. Potential-sweep voltammetry: general theory of chemical polarization. Electrochim. Acta 12, 629–646 (1967).

    Article  Google Scholar 

  84. Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Visscher, W. Cyclic voltammetry on lead electrodes in sulphuric acid solution. J. Power Sources 1, 257–266 (1976).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the research laboratories of J. Anderson, G. Dong, S. Snyder, V. Rawal, C. Amanchukwu and M. Hopkins for sharing their chemical inventories. We thank A. Tokmakoff for helpful discussions on spectroscopic data. We thank A. Filatov, K. Glusac and B. Behera for assistance with XPS data collection at the University of Chicago and the University of Illinois at Chicago, respectively. We thank J. Kurutz for assistance with NMR data collection at the University of Chicago. This research made use of the University of Chicago Mass Spectrometry Facility (National Science Foundation instrumentation grant no. CHE-1048528). This research was partially supported by the University of Chicago startup funds and a James R. Norris, Jr. fellowship to S.K. (University of Chicago, Department of Chemistry). Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number 1R35GM150845.

Author information

Authors and Affiliations

Authors

Contributions

A.W. coordinated and conceived the research. A.W., Q.-C.C. and S.K. designed the experiments. A.W., Q.-C.C., S.K. and R.M. performed the experiments. A.W., Q.-C.C. and S.K. analysed data. A.W., Q.-C.C. and S.K. wrote the paper with input from all authors.

Corresponding author

Correspondence to Anna Wuttig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Angel Cuesta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–6, Figs. 1–143 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, QC., Kress, S., Molinelli, R. et al. Interfacial tuning of electrocatalytic Ag surfaces for fragment-based electrophile coupling. Nat Catal 7, 120–131 (2024). https://doi.org/10.1038/s41929-023-01073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01073-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing