Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex molecule synthesis by electrocatalytic decarboxylative cross-coupling

Abstract

Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2,3,4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Accessing polyfunctionalized carbon framework via polar (2e) and radical (1e) disconnection.
Fig. 2: Development and scope of the second-generation dDCC.
Fig. 3: Demonstration for radical simplification of natural product synthesis via second-generation dDCC.
Fig. 4: Natural product syntheses based on various chiral carboxylic acids enabled by second-generation dDCC.

Similar content being viewed by others

Data availability

The data that support the findings in this work are available within the paper and in the Supplementary Information.

References

  1. Corey, E. J. & Cheng, X.-M. Logic of Chemical Synthesis (Wiley, 1995).

  2. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).

    Article  Google Scholar 

  3. Warren, S. G. & Wyatt, P. Organic Synthesis: The Disconnection Approach (Wiley, 2008).

  4. Hoffmann, R. W. Elements of Synthesis Planning (Springer, 2009).

  5. Clayden, J., Greeves, N. & Warren, S. G. Organic Chemistry (OUP, 2012).

  6. Kürti, L. & Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis (Elsevier Science, 2005).

  7. Smith, M. B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (Wiley, 2013).

  8. Palkowitz, M. D. et al. Overcoming limitations in decarboxylative arylation via Ag–Ni electrocatalysis. J. Am. Chem. Soc. 144, 17709–17720 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harwood, S. J. et al. Modular terpene synthesis enabled by mild electrochemical couplings. Science 375, 745–752 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Nicolaou, K. C., Sorensen, E. J. & Winssinger, N. The art and science of organic and natural products synthesis. J. Chem. Educ. 75, 1225–1258 (1998).

    Article  Google Scholar 

  11. Nicolaou, K. C., Vourloumis, D., Winssinger, N. & Baran, P. S. The art and science of total synthesis at the dawn of the twenty‐first century. Angew. Chem. Int. Ed. 39, 44–122 (2000).

    Article  CAS  Google Scholar 

  12. Shen, Y. et al. Automation and computer-assisted planning for chemical synthesis. Nat. Rev. Methods Primers 1, 23 (2021).

    Article  CAS  Google Scholar 

  13. Smith, J. M., Harwood, S. J. & Baran, P. S. Radical retrosynthesis. Acc. Chem. Res. 51, 1807–1817 (2018).

  14. Zhang, B. et al. Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Yadav, J. S. & Rajendar, G. Stereoselective total synthesis of polyrhacitides A and B. Eur. J. Org. Chem. 2011, 6781–6788 (2011).

    Article  CAS  Google Scholar 

  16. Gaich, T. & Baran, P. S. Aiming for the ideal synthesis. J. Org. Chem. 75, 4657–4673 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Peters, D. S. et al. Ideality in context: motivations for total synthesis. Acc. Chem. Res. 54, 605–617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giese, B. & Dupuis, J. Anomeric effect of radicals. Tetrahedron Lett. 25, 1349–1352 (1984).

    Article  CAS  Google Scholar 

  19. Zhang, Y., Ma, D. & Zhang, Z. Utilization of photocatalysts in decarboxylative coupling of carboxylic N-hydroxyphthalimide (NHPI) esters. Arab. J. Chem. 15, 103922 (2022).

    Article  CAS  Google Scholar 

  20. Goldfogel, M. J., Huang, L. & Weix, D. J. in Nickel Catalysis in Organic Synthesis: Methods and Reactions (ed. Ogoshi, S.) Ch. 9, 183–222 (Wiley, 2019).

  21. Halperin, S. D. & Britton, R. Chlorine, an atom economical auxiliary for asymmetric aldol reactions. Org. Biomol. Chem. 11, 1702–1705 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Borg, T., Danielsson, J. & Somfai, P. Mukaiyama aldol addition to α-chloro-substituted aldehydes. Origin of the unexpected syn selectivity. Chem. Commun. 46, 1281–1283 (2010).

    Article  CAS  Google Scholar 

  23. Binder, J. T. & Kirsch, S. F. Iterative approach to polyketide-type structures: stereoselective synthesis of 1,3-polyols utilizing the catalytic asymmetric Overman esterification. Chem. Commun. (Camb) 40, 4164–4166 (2007).

    Article  Google Scholar 

  24. Vanjivaka, S. et al. An alternative stereoselective total synthesis of verbalactone. Arkivoc 2018, 50–57 (2018).

    Article  Google Scholar 

  25. Wu, J.-Z. et al. Facile access to some chiral building blocks. Synthesis of verbalactone and exophilin A. Tetrahedron 65, 289–299 (2009).

    Article  CAS  Google Scholar 

  26. Allais, F., Louvel, M.-C. & Cossy, J. A short and highly diastereoselective synthesis of verbalactone. Synlett 2007, 0451–0452 (2007).

    Article  Google Scholar 

  27. Cunha, V. L. S., Liu, X., Lowary, T. L. & O’Doherty, G. A. De novo asymmetric synthesis of avocadyne, avocadene, and avocadane stereoisomers. J. Org. Chem. 84, 15718–15725 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, J. et al. Cu-catalyzed decarboxylative borylation. ACS Catal. 8, 9537–9542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Markad, S. B., Bhosale, V. A., Bokale, S. R. & Waghmode, S. B. Stereoselective approach towards the synthesis of 3R, 5 S gingerdiol and 3 S, 5 S gingerdiol. ChemistrySelect 4, 502–505 (2019).

    Article  CAS  Google Scholar 

  30. Sabitha, G., Srinivas, C., Reddy, T. R., Yadagiri, K. & Yadav, J. S. Synthesis of gingerol and diarylheptanoids. Tetrahedron Asymmetry 22, 2124–2133 (2011).

    Article  CAS  Google Scholar 

  31. Wan, Z., Zhang, G., Chen, H., Wu, Y. & Li, Y. A chiral pool and cross metathesis based synthesis of gingerdiols. Eur. J. Org. Chem. 2014, 2128–2139 (2014).

    Article  CAS  Google Scholar 

  32. Blechert, S. & Dollt, H. Synthesis of (−)-streptenol A, (±)-streptenol B, C and D. Liebigs Ann 1996, 2135–2140 (1996).

    Article  Google Scholar 

  33. Mallampudi, N. A., Reddy, G. S., Maity, S. & Mohapatra, D. K. Gold(I)-catalyzed cyclization for the synthesis of 8-hydroxy-3- substituted isocoumarins: total synthesis of exserolide F. Org. Lett. 19, 2074–2077 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Dumpala, M., Kadari, L. & Krishna, P. R. Brønsted acid promoted intramolecular cyclization of O-alkynyl benzoic acids: concise total synthesis of exserolide F. Synthetic Commun. 48, 2403–2408 (2018).

    Article  CAS  Google Scholar 

  35. Kumar, H., Reddy, A. S. & Reddy, B. V. S. The stereoselective total synthesis of PF1163A. Tetrahedron Lett. 55, 1519–1522 (2014).

    Article  CAS  Google Scholar 

  36. Tatsuya, K., Takano, S., Ikeda, Y., Nakano, S. & Miyazaki, S. The total synthesis and absolute structure of antifungal antibiotics (−)-PF1163A and B. J. Antibiotics 52, 1146–1151 (1999).

    Article  Google Scholar 

  37. Krishna, P. R. & Srinivas, P. Total synthesis of the antifungal antibiotic PF1163A. Tetrahedron Asymmetry 23, 769–774 (2012).

    Article  Google Scholar 

  38. Li, N., Shi, Z., Tang, Y., Chen, J. & Li, X. Recent progress on the total synthesis of acetogenins from Annonaceae. Beilstein J. Org. Chem. 4, 48 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gulavita, N., Hori, A., Shimizu, Y., Laszlo, P. & Clardy, J. Aphanorphine, a novel tricyclic alkaloid from the blue-green alga Aphanizomenon flos-aquae. Tetrahedron Lett. 29, 4381–4384 (1988).

    Article  CAS  Google Scholar 

  40. Shigehisa, H., Ano, T., Honma, H., Ebisawa, K. & Hiroya, K. Co-catalyzed hydroarylation of unactivated olefins. Org. Lett. 18, 3622–3625 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, C. & Guan, Y. Concise total synthesis of (+)-aphanorphine. Synlett 32, 913–916 (2021).

    Article  CAS  Google Scholar 

  42. Ziarani, G. M., Mohajer, F. & Kheilkordi, Z. Recent progress towards synthesis of the indolizidine alkaloid 195B. Curr. Org. Synth. 17, 82–90 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Harding, C. I., Dixon, D. J. & Ley, S. V. The preparation and alkylation of a butanedione-derived chiral glycine equivalent and its use for the synthesis of α-amino acids and α,α-disubstituted amino acids. Tetrahedron 60, 7679–7692 (2004).

    Article  CAS  Google Scholar 

  44. Xu, Y. & Tan, D. S. Total synthesis of the bacterial diisonitrile chalkophore SF2768. Org. Lett. 21, 8731–SF8735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kamanos, K. A. D. & Withey, J. M. Enantioselective total synthesis of (R)-(−)-complanine. Beilstein J. Org. Chem. 8, 1695–1699 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to D.-H. Huang and L. Pasternack (Scripps Research) for nuclear magnetic resonance spectroscopic assistance and J. Chen and Q. Nguyen Wong (Scripps Automated Synthesis Facility) for assistance with high-resolution mass spectrometry. Financial support for this work was provided by the National Science Foundation Center for Synthetic Organic Electrochemistry (grant CHE-2002158 for optimization of reactivity and initial scope) and the National Institutes of Health (grant GM-118176 for the application of the method to natural product synthesis). We also thank the George E. Hewitt Foundation (to G.L.) for support.

Author information

Authors and Affiliations

Authors

Contributions

B.Z., Y.K. and P.S.B. conceptualized the study. B.Z., J.H., Y.G., L.L., M.S.O., M.D.P., C.B. and Y.K. performed the experimental investigation. B.Z., J.H., Y.G., L.L., M.S.O., M.D.P., T.G.M.D., M.D.M., M.R.C., D.C.S., P.N.B., T.C., S.C., N.N.P., G.L., Y.K. and P.S.B. performed data analysis. B.Z., J.H., Y.K. and P.S.B. wrote the manuscript. Y.K. and P.S.B. acquired funding. Y.K. and P.S.B. performed project administration.

Corresponding authors

Correspondence to Yu Kawamata or Phil S. Baran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Christian Malapit and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, compounds and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., He, J., Gao, Y. et al. Complex molecule synthesis by electrocatalytic decarboxylative cross-coupling. Nature 623, 745–751 (2023). https://doi.org/10.1038/s41586-023-06677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06677-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing