Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation

Abstract

Hydroxide exchange membrane fuel cell (HEMFC) is a potentially cost-effective energy conversion technology. However, current state-of-the-art HEMFCs require a high loading of platinum-group-metal (PGM) catalysts, especially for the hydrogen oxidation reaction. Here we develop a porous nitrogen-doped carbon-suppported PtRu hydrogen oxidation reaction catalyst (PtRu/pN-C) that has a high intrinsic and mass activity in alkaline condition. Spectroscopic and microscopic data indicate the presence of Pt single atoms in addition to PtRu nanoparticles on pN-C. Mechanistic study suggests Ru modulates the electronic structure of Pt for an optimized hydrogen binding energy, while Pt single atoms on pN-C optimize the interfacial water structure. These synergetic interactions are responsible for the high catalytic activity of this catalyst. An HEMFC with a low loading of this catalyst and a commercial Fe–N–C oxygen reduction reaction catalyst achieves a high PGM utilization rate. The current density at 0.65 V of this HEMFC reaches 1.5 A cm−2, exceeding the US Department of Energy 2022 target (1 A cm−2) by 50%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalyst synthesis and characterization.
Fig. 2: X-ray spectroscopic characterization.
Fig. 3: Mechanistic study.
Fig. 4: Electrochemical test for optimized PtRu/pN-C catalyst.

Similar content being viewed by others

Data availability

All data are available in the article and its Supplementary Information. The source data were deposited in the Zenodo repository (https://zenodo.org/record/8114588)53. Source data are provided with this paper.

References

  1. Setzler, B. P., Zhuang, Z., Wittkopf, J. A. & Yan, Y. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 11, 1020–1025 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, J. et al. Recent insights on catalyst layers for anion exchange membrane fuel cells. Adv. Sci. 8, e2100284 (2021).

    Article  Google Scholar 

  3. Chen, N. et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat. Commun. 12, 2367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mandal, M. et al. The importance of water transport in high-conductivity and high-power alkaline fuel cells. J. Electrochem. Soc. 167, 054501 (2019).

    Article  Google Scholar 

  5. An, L., Zhao, X., Zhao, T. & Wang, D. Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. Energy Environ. Sci. 14, 2620–2638 (2021).

    Article  CAS  Google Scholar 

  6. Zhou, Y. et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 3, 454–462 (2020).

    Article  CAS  Google Scholar 

  7. Li, M. et al. Revealing the regulation mechanism of Ir–MoO2 interfacial chemical bonding for improving hydrogen oxidation reaction. ACS Catal. 11, 14932–14940 (2021).

    Article  CAS  Google Scholar 

  8. Cong, Y., Chai, C., Zhao, X., Yi, B. & Song, Y. Pt0.25Ru0.75/N‐C as highly active and durable electrocatalysts toward alkaline hydrogen oxidation reaction. Adv. Mater. Inter. 7, 2000310 (2020).

    Article  CAS  Google Scholar 

  9. Wang, Y. H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiao, L., Liu, E., Mukerjee, S. & Jia, Q. In situ identification of non-specific adsorption of alkali metal cations on Pt surfaces and their catalytic roles in alkaline solutions. ACS Catal. 10, 11099–11109 (2020).

    Article  CAS  Google Scholar 

  12. Liu, E. et al. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy Environ. Sci. 13, 3064–3074 (2020).

    Article  CAS  Google Scholar 

  13. Sun, Q. et al. Understanding hydrogen electrocatalysisby probing the hydrogen-bond network ofwater at the electrified Pt–solution interface. Nat. Energy https://doi.org/10.1038/s41560-023-01302-y (2023).

  14. Thompson, S. T., Peterson, D., Ho, D. & Papageorgopoulos, D. Perspective—the next decade of AEMFCs: near-term targets to accelerate applied R&D. J. Electrochem. Soc. 167, 084514 (2020).

    Article  CAS  Google Scholar 

  15. Yarlagadda, V. et al. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3, 618–621 (2018).

    Article  CAS  Google Scholar 

  16. Wang, H. & Abruna, H. D. IrPdRu/C as H2 oxidation catalysts for alkaline fuel cells. J. Am. Chem. Soc. 139, 6807–6810 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Ohyama, J., Sato, T., Yamamoto, Y., Arai, S. & Satsuma, A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 135, 8016–8021 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, R. et al. Ultrafine Pt-cluster and RuO2-heterojunction anode catalysts designed for ultra-low Pt-loading anion exchange membrane fuel cells. Nanoscale Horiz. 5, 316–324 (2020).

    Article  CAS  Google Scholar 

  19. Wang, Y. et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015).

    Article  CAS  Google Scholar 

  20. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Article  CAS  Google Scholar 

  21. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rebollar, L. et al. “Beyond adsorption” descriptors in hydrogen electrocatalysis. ACS Catal. 10, 14747–14762 (2020).

    Article  CAS  Google Scholar 

  24. Zheng, J., Nash, J., Xu, B. & Yan, Y. Perspective—towards establishing apparent hydrogen binding energy as the descriptor for hydrogen oxidation/evolution reactions. J. Electrochem. Soc. 165, H27–H29 (2018).

    Article  CAS  Google Scholar 

  25. Cheng, T., Wang, L., Merinov, B. V. & Goddard, W. A. 3rd Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: greatly weakened water adsorption at high pH. J. Am. Chem. Soc. 140, 7787–7790 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  27. Giles, S. A. et al. Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. J. Catal. 367, 328–331 (2018).

    Article  CAS  Google Scholar 

  28. Campos-Roldán, C. A. & Alonso-Vante, N. The hydrogen oxidation reaction in alkaline medium: an overview. Electrochem. Energy Rev. 2, 312–331 (2019).

    Article  Google Scholar 

  29. Rodrigues, M. Pd. S. et al. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution reaction under visible light. ACS Catal. 11, 13543–13555 (2021).

    Article  CAS  Google Scholar 

  30. Zheng, Y. et al. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Soc. Chem. 138, 16174–16181 (2016).

    Article  CAS  Google Scholar 

  31. Liu, Y. et al. Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P–Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. J. Am. Chem. Soc. 140, 2731–2734 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, Y. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021).

    Article  CAS  Google Scholar 

  33. Zhuang, L., Jin, J. & Abruña, H. D. Direct observation of electrocatalytic synergy. J. Am. Chem. Soc. 129, 11033–11035 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Li, J. et al. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem. Int. Ed. 56, 15594–15598 (2017).

    Article  CAS  Google Scholar 

  35. Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

    Article  CAS  Google Scholar 

  36. Ataka, K.-i, Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996).

    Article  CAS  Google Scholar 

  37. Yang, X., Nash, J., Oliveira, N., Yan, Y. & Xu, B. Understanding the pH dependence of underpotential deposited hydrogen on platinum. Angew. Chem. Int. Ed. 131, 17882–17887 (2019).

    Article  Google Scholar 

  38. Zhu, S., Qin, X., Yao, Y. & Shao, M. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 142, 8748–8754 (2020).

    Article  PubMed  Google Scholar 

  39. Osawa, M., Tsushima, M., Mogami, H., Samjeské, G. & Yamakata, A. Structure of water at the electrified platinum–water interface: a study by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. C 112, 4248–4256 (2008).

    Article  CAS  Google Scholar 

  40. Iwasita, T. & Xia, X. Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge. J. Electroanal. Chem. 411, 95–102 (1996).

    Article  Google Scholar 

  41. Li, P. et al. Hydrogen-bond-network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

    Article  CAS  Google Scholar 

  42. Zhang, J. et al. Engineering the near-surface of PtRu3 nanoparticles to improve hydrogen oxidation activity in alkaline electrolyte. Small 17, e2006698 (2021).

    Article  PubMed  Google Scholar 

  43. Wang, G. et al. Unraveling the composition–activity relationship of Pt–Ru binary alloy for hydrogen oxidation reaction in alkaline media. J. Power Sources 412, 282–286 (2019).

    Article  CAS  Google Scholar 

  44. Zhu, S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 4, 711–718 (2021).

    Article  CAS  Google Scholar 

  45. Lu, S. & Zhuang, Z. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 139, 5156–5163 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Ul Hassan, N. et al. Achieving high‐performance and 2000 h stability in anion-exchange membrane fuel cells by manipulating ionomer properties and electrode optimization. Adv. Energy Mater. 10, 2001986 (2020).

    Article  CAS  Google Scholar 

  47. Adabi, H. et al. High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 6, 834–843 (2021).

    Article  CAS  Google Scholar 

  48. Jiao, K. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Omasta, T. J. et al. Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs. Energy Environ. Sci. 11, 551–558 (2018).

    Article  CAS  Google Scholar 

  50. Omasta, T. J. et al. Importance of balancing membrane and electrode water in anion-exchange membrane fuel cells. J. Power Sources 375, 205–213 (2018).

    Article  CAS  Google Scholar 

  51. Bao, W. J. et al. Au/ZnSe-based surface enhanced infrared absorption spectroscopy as a universal platform for bioanalysis. Anal. Chem. 90, 3842–3848 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Mustain, W. E. Understanding how high-performance anion-exchange membrane fuel cells were achieved: component, interfacial, and cell-level factors. Curr. Opin. Electrochem. 12, 233–239 (2018).

    Article  CAS  Google Scholar 

  53. Ni, W. et al. Source data of “A synergistic Pt–Ru-nitrogen-doped-carbon hydrogen oxidation catalyst”. Zenodo https://doi.org/10.5281/zenodo.8114588 (2023).

Download references

Acknowledgements

W.N., J.L.M., M.C., L.B., S.L., W.C.M. and X.H. acknowledge the financial support of EPFL. W.E.M. and N.U.H. gratefully acknowledge the financial support of the US DOE Office of Energy Efficiency and Renewable Energy under the Hydrogen and Fuel Cells Technologies Office (HFTO) (award number DE-EE0008433) to perform the AEMFC experiments. Y.-C.C. and H.M.C. acknowledge the Ministry of Science and Technology, Taiwan (contract no. MOST 110-2628-M-002-001-RSP); S.S., S.J. and J.S.L. were supported by the Swiss National Science Foundation Grant 200021_182605 as well as the European Union’s Horizon 2020 Research and innovation programme (starting grant CATACOAT, no. 758653). We acknowledge the help of B. Victor from CIME, EPFL, for conducting aberration-corrected HAADF-STEM and corresponding analysis.

Author information

Authors and Affiliations

Authors

Contributions

W.N. designed and synthesized the catalysts and performed the majority of electrochemical tests, characterization and analysis; J.L.M. contributed to the synthesis of catalysts and electrochemical measurements; N.U.H. and Y.Z. assembled the MEA and performed the fuel cell performance; W.N., M.C. and S.L. conducted the in situ SEIRAS experiments; Y.-C.C. conducted XAS measurement under the supervision of H.M.C.; S.S. and S.J. performed the chemisorption experiments under the supervision of J.S.L.; A.K. performed the XPS measurements under the supervision of A.S.; L.B. performed the aberration-corrected HAADF-STEM; W.M. contributed to TEM and SEM measurements. W.N. and X.H. wrote the paper, with input from all the other co-authors. W.E.M. and X.H. directed the research.

Corresponding authors

Correspondence to William E. Mustain or Xile Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–3, Figs. 1–36, Tables 1–4 and References.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, W., Meibom, J.L., Hassan, N.U. et al. Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nat Catal 6, 773–783 (2023). https://doi.org/10.1038/s41929-023-01007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01007-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing