Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Control of DNA replication in vitro using a reversible replication barrier

Abstract

A major obstacle to studying DNA replication is that it involves asynchronous and highly delocalized events. A reversible replication barrier overcomes this limitation and allows replication fork movement to be synchronized and localized, facilitating the study of replication fork function and replication coupled repair. Here we provide details on establishing a reversible replication barrier in vitro and using it to monitor different aspects of DNA replication. DNA template containing an array of lac operator (lacO) sequences is first bound to purified lac repressor (LacR). This substrate is then replicated in vitro using a biochemical replication system, which results in replication forks stalled on either side of the LacR array regardless of when or where they arise. Once replication forks are synchronized at the barrier, isopropyl-β-d-thiogalactopyranoside can be added to disrupt LacR binding so that replication forks synchronously resume synthesis. We describe how this approach can be employed to control replication fork elongation, termination, stalling and uncoupling, as well as assays that can be used to monitor these processes. We also explain how this approach can be adapted to control whether replication forks encounter a DNA lesion on the leading or lagging strand template and whether a converging fork is present. The required reagents can be prepared in 1–2 weeks and experiments using this approach are typically performed over 1–3 d. The main requirements for utilizing the LacR replication barrier are basic biochemical expertise and access to an in vitro system to study DNA replication. Investigators should also be trained in working with radioactive materials.

Key points

  • This protocol describes an approach to study DNA replication in vitro, based on the formation of a replication barrier that stalls asynchronously advancing replicative forks. Stalling of replication forks can be resolved by adding isopropyl-β-d-thiogalactopyranoside, causing the replication of the DNA template to restart synchronously.

  • Application of this method allows various aspects of DNA replication (elongation, termination, stalling and uncoupling) and replication-coupled DNA repair to be studied.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Control of replication fork movement by a lac repressor (LacR) array.
Fig. 2: Use of a LacR barrier to control replication fork termination, uncoupling and stalling.
Fig. 3: Purification of biotinylated LacR.
Fig. 4: Quality control of subcloned lacO array plasmids.
Fig. 5: Preparation of plasmids containing modified nucleotides.
Fig. 6: Replication fork uncoupling using a LacR barrier.
Fig. 7: Native gel analysis of replication fork structures.
Fig. 8: 2D gel analysis of replication fork structures.
Fig. 9: Denaturing gel analysis of nascent DNA strands.

Similar content being viewed by others

Data availability

Sequences for plasmid DNA templates (Table 1) are available upon request Source data are provided with this paper.

References

  1. Berti, M., Cortez, D. & Lopes, M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633–651 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, Y. H. et al. Transcription shapes DNA replication initiation and termination in human cells. Nat. Struct. Mol. Biol. 26, 67–77 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Czajkowsky, D. M., Liu, J., Hamlin, J. L. & Shao, Z. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J. Mol. Biol. 375, 12–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. McGuffee, S. R., Smith, D. J. & Whitehouse, I. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol. Cell 50, 123–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, W. et al. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Mol. Cell 81, 2975–2988.e2976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baris, Y., Taylor, M. R. G., Aria, V. & Yeeles, J. T. P. Fast and efficient DNA replication with purified human proteins. Nature 606, 204–210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walter, J., Sun, L. & Newport, J. Regulated chromosomal DNA replication in the absence of a nucleus. Mol. Cell 1, 519–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Yeeles, J. T., Deegan, T. D., Janska, A., Early, A. & Diffley, J. F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jackson, D. A. S-phase progression in synchronized human cells. Exp. Cell Res. 220, 62–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Loveland, A. B., Habuchi, S., Walter, J. C. & van Oijen, A. M. A general approach to break the concentration barrier in single-molecule imaging. Nat. Methods 9, 987–992 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yardimci, H., Loveland, A. B., Habuchi, S., van Oijen, A. M. & Walter, J. C. Uncoupling of sister replisomes during eukaryotic DNA replication. Mol. Cell 40, 834–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Emerson, D. J. et al. Cohesin-mediated loop anchors confine the locations of human replication origins. Nature 606, 812–819 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dewar, J. M., Budzowska, M. & Walter, J. C. The mechanism of DNA replication termination in vertebrates. Nature 525, 345–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Low, E., Chistol, G., Zaher, M. S., Kochenova, O. V. & Walter, J. C. The DNA replication fork suppresses CMG unloading from chromatin before termination. Genes Dev. 34, 1534–1545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Payne, B. T. et al. Replication fork blockage by transcription factor–DNA complexes in Escherichia coli. Nucleic Acids Res. 34, 5194–5202 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Possoz, C., Filipe, S. R., Grainge, I. & Sherratt, D. J. Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J. 25, 2596–2604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vrtis, K. B. et al. Single-strand DNA breaks cause replisome disassembly. Mol. Cell 81, 1309–1318.e1306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, J. et al. DNA interstrand cross-link repair requires replication-fork convergence. Nat. Struct. Mol. Biol. 22, 242–247 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duxin, J. P., Dewar, J. M., Yardimci, H. & Walter, J. C. Repair of a DNA–protein crosslink by replication-coupled proteolysis. Cell 159, 346–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Semlow, D. R., Zhang, J., Budzowska, M., Drohat, A. C. & Walter, J. C. Replication-dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase. Cell 167, 498–511.e414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Campos, L. V. et al. RTEL1 and MCM10 overcome topological stress during vertebrate replication termination. Cell Rep. 42, 112109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sparks, J. L. et al. The CMG helicase bypasses DNA-protein cross-links to facilitate their repair. Cell 176, 167–181.e121 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Van Ravenstein, S. X. et al. Topoisomerase II poisons inhibit vertebrate DNA replication through distinct mechanisms. EMBO J. 41, e110632 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kavlashvili, T., Liu, W., Mohamed, T. M., Cortez, D. & Dewar, J. M. Replication fork uncoupling causes nascent strand degradation and fork reversal. Nat. Struct. Mol. Biol. 30, 115–124 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng, L. et al. Mitotic CDK promotes replisome disassembly, fork breakage, and complex DNA rearrangements. Mol. Cell 73, 915–929.e916 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dewar, J. M., Low, E., Mann, M., Räschle, M. & Walter, J. C. CRL2(Lrr1) promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev. 31, 275–290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heintzman, D. R., Campos, L. V., Byl, J. A. W., Osheroff, N. & Dewar, J. M. Topoisomerase II is crucial for fork convergence during vertebrate replication termination. Cell Rep. 29, 422–436.e425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato, K., Martin-Pintado, N., Post, H., Altelaar, M. & Knipscheer, P. Multistep mechanism of G-quadruplex resolution during DNA replication. Sci. Adv. 7, eabf8653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Räschle, M. et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134, 969–980 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lebofsky, R., Takahashi, T. & Walter, J. C. DNA replication in nucleus-free Xenopus egg extracts. Methods Mol. Biol. 521, 229–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Klein Douwel, D. et al. XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell. 54, 460–471 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698–1701 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Budzowska, M., Graham, T. G., Sobeck, A., Waga, S. & Walter, J. C. Regulation of the Rev1–pol ζ complex during bypass of a DNA interstrand cross-link. EMBO J. 34, 1971–1985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Long, D. T., Joukov, V., Budzowska, M. & Walter, J. C. BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol. Cell 56, 174–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Räschle, M. et al. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348, 1253671 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Larsen, N. B. et al. Replication-coupled DNA–protein crosslink repair by SPRTN and the proteasome in Xenopus egg extracts. Mol. Cell 73, 574–588.e577 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeeles, J. T. P., Janska, A., Early, A. & Diffley, J. F. X. How the Eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65, 105–116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Minamino, M., Bouchoux, C., Canal, B., Diffley, J. F. X. & Uhlmann, F. A replication fork determinant for the establishment of sister chromatid cohesion. Cell 186, 837–849.e811 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Casas-Delucchi, C. S., Daza-Martin, M., Williams, S. L. & Coster, G. The mechanism of replication stalling and recovery within repetitive DNA. Nat. Commun. 13, 3953 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chacin, E. et al. Establishment and function of chromatin organization at replication origins. Nature 616, 836–842 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Douglas, M. E. & Diffley, J. F. X. Budding yeast Rap1, but not telomeric DNA, is inhibitory for multiple stages of DNA replication in vitro. Nucleic Acids Res. 49, 5671–5683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Devbhandari, S. & Remus, D. Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks. Nat. Struct. Mol. Biol. 27, 461–471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baretić, D. et al. Cryo-EM structure of the fork protection complex bound to CMG at a replication fork. Mol. Cell 78, 926–940.e913 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jenkyn-Bedford, M. et al. A conserved mechanism for regulating replisome disassembly in eukaryotes. Nature 600, 743–747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peter, B. J., Ullsperger, C., Hiasa, H., Marians, K. J. & Cozzarelli, N. R. The structure of supercoiled intermediates in DNA replication. Cell 94, 819–827 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Suski, C. & Marians, K. J. Resolution of converging replication forks by RecQ and topoisomerase III. Mol. Cell 30, 779–789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Larsen, N. B., Sass, E., Suski, C., Mankouri, H. W. & Hickson, I. D. The Escherichia coli Tus–Ter replication fork barrier causes site-specific DNA replication perturbation in yeast. Nat. Commun. 5, 3574 (2014).

    Article  PubMed  Google Scholar 

  48. Willis, N. A. et al. BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature 510, 556–559 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Elango, R. et al. The structure-specific endonuclease complex SLX4–XPF regulates Tus–Ter-induced homologous recombination. Nat. Struct. Mol. Biol. 29, 801–812 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gallina, I. et al. The ubiquitin ligase RFWD3 is required for translesion DNA synthesis. Mol. Cell 81, 442–458.e449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kose, H. B., Larsen, N. B., Duxin, J. P. & Yardimci, H. Dynamics of the Eukaryotic replicative helicase at lagging-strand protein barriers support the steric exclusion model. Cell Rep. 26, 2113–2125.e2116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hizume, K., Endo, S., Muramatsu, S., Kobayashi, T. & Araki, H. DNA polymerase ε-dependent modulation of the pausing property of the CMG helicase at the barrier. Genes Dev. 32, 1315–1320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beuzer, P., Quivy, J. P. & Almouzni, G. Establishment of a replication fork barrier following induction of DNA binding in mammalian cells. Cell Cycle 13, 1607–1616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roukos, V., Burgess, R. C. & Misteli, T. Generation of cell-based systems to visualize chromosome damage and translocations in living cells. Nat. Protoc. 9, 2476–2492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hua, X. H. & Newport, J. Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J. Cell Biol. 140, 271–281 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hua, X. H., Yan, H. & Newport, J. A role for Cdk2 kinase in negatively regulating DNA replication during S phase of the cell cycle. J. Cell Biol. 137, 183–192 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sparks, J. & Walter, J. C. Extracts for analysis of DNA replication in a nucleus-free system. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot097154 (2019).

  58. Sheehan, M. A., Mills, A. D., Sleeman, A. M., Laskey, R. A. & Blow, J. J. Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs. J. Cell Biol. 106, 1–12 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Santamaría, D. et al. Bi-directional replication and random termination. Nucleic Acids Res. 28, 2099–2107 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yardimci, H. et al. Bypass of a protein barrier by a replicative DNA helicase. Nature 492, 205–209 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laskey, R. A., Mills, A. D. & Morris, N. R. Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10, 237–243 (1977).

    Article  CAS  PubMed  Google Scholar 

  62. Amunugama, R. et al. Replication fork reversal during DNA interstrand crosslink repair requires CMG unloading. Cell Rep. 23, 3419–3428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Long, D. T., Räschle, M., Joukov, V. & Walter, J. C. Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333, 84–87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Yeeles and K. Marians for the original LacR purification protocol and LacR expression plasmid. J.M.D. was supported by National Institutes of Health grant R01ES034847. E.J.V., S.N.D. and M.T.C. were supported by National Institutes of Health grant T32ES007028. M.T.C. was also supported by F32GM148024. Animal protocols were approved by Vanderbilt Division of Animal Care and Institutional Animal Care and Use committee. The authors complied with all relevant ethical regulations.

Author information

Authors and Affiliations

Authors

Contributions

J.M.D. developed the LacR barrier approach and related assays. J.M.D. and T.K. adopted the LacR barrier approach to induce site-specific uncoupling and developed related assays. J.M.D. and E.J.V. optimized and refined the LacR barrier approach to induce site-specific uncoupling and related assays. J.M.D., S.N.D. and M.T.C. developed the approach to introduce site-specific base modifications into template plasmid. E.J.V., T.K. and S.N.D. performed the experiments shown. J.M.D. and E.J.V. wrote the manuscript with input from S.N.D. and T.K.

Corresponding author

Correspondence to James M. Dewar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Heintzman, D. R. et al. Cell Rep. 29, 422–436.e5 (2019): https://doi.org/10.1016/j.celrep.2019.08.097

Van Ravenstein, S. X. et al. EMBO J. 41, e110632 (2022): https://doi.org/10.15252/embj.2022110632

Kavlashvili, T. et al. Nat. Struct. Mol. Biol. 30, 115–124 (2023): https://doi.org/10.1038/s41594-022-00871-y

Source data

Source Data Fig. 1

Source Data Fig. 2

Uncropped autoradiograph for Fig. 2b.

Source Data Fig. 3

Uncropped Coomassie-stained SDS–PAGE gel for Fig. 3b.

Source Data Fig. 4

Uncropped SYBR gold-stained agarose gel for Fig. 4b.

Source Data Fig. 5

Uncropped ethidium bromide-stained agarose gel for Fig. 5b.

Source Data Fig. 6

Uncropped autoradiograph for Fig. 6b.

Source Data Fig. 7

Uncropped autoradiograph for Fig. 7b.

Source Data Fig. 8

Uncropped autoradiographs for Fig. 8b and f.

Source Data Fig. 9

Uncropped autoradiograph for Fig. 9b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vontalge, E.J., Kavlashvili, T., Dahmen, S.N. et al. Control of DNA replication in vitro using a reversible replication barrier. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00977-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer