Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Comprehensive synthesis of Ti3C2Tx from MAX phase to MXene

Abstract

MXenes are a large family of two-dimensional materials that have attracted attention across many fields due to their desirable optoelectronic, biological, mechanical and chemical properties. There currently exist many synthesis procedures that lead to differences in flake size, defects and surface chemistry, which in turn affect their properties. Herein, we describe the steps to synthesize Ti3C2Tx—the most important and widely used MXene, from a Ti3AlC2 MAX phase precursor. The procedure contains three main sections: synthesis of Ti3AlC2 MAX, wet chemical etching of the MAX in hydrofluoric acid/HCl solution to yield multilayer Ti3C2Tx and its delamination into single-layer flakes. Three delamination options are described; these use LiCl, tertiary amines (tetramethyl ammonium hydroxide/ tetrabutyl ammonium hydroxide) and dimethylsulfoxide respectively. These procedures can be adapted for the synthesis of MXenes beyond Ti3C2Tx. The MAX phase synthesis takes about 1 week, with the etching and delamination each requiring 2 d. This protocol requires users to have experience working with hydrofluoric acid, and it is recommended that users have experience with wet chemistry and centrifugation; characterization techniques such as X-ray diffraction and particle size analysis are also essential for the success of the protocol. While alternative synthesis methods, such as minimally intensive layer delamination, are desirable for certain MXenes (such as Ti2CTx) or specific applications, this protocol aims to standardize the more commonly used hydrofluoric acid/HCl etching method, which produces Ti3C2Tx with minimal concentration of defects and the highest conductivity and serves as a guideline for those working with MXenes for the first time.

Key points

  • MXenes are two-dimensional materials, the best known of which is Ti3C2Tx. Many diverse and unique properties have been described for MXenes, but it is difficult to compare the data because their physical characteristics depend on their synthesis.

  • This protocol provides a detailed guideline for the synthesis of a Ti3AlC2 MAX phase precursor, wet chemical etching of MAX to yield multilayer Ti3C2Tx and its delamination into single-layer flakes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extent-of-etching versus time kinetic curves for Ti3AlC2 MAX etching reactions.
Fig. 2: Evolution of MAX phase during the synthesis steps.
Fig. 3: Comparison of the MAX phase vs etched multilayer structure.
Fig. 4: Swelling of the delaminated sediment indicating successful delamination.
Fig. 5: Proper setup of the etching reaction on a hot plate.
Fig. 6: Passivation of the ball-milled bottle.
Fig. 7: Steps of MAX-phase processing for a 50 g batch.
Fig. 8: HCl washing of MAX phase.
Fig. 9: Washing the acid from a 1 g etching reaction to yield neutral ML MXene.
Fig. 10: LiCl delamination washing and collection procedure.
Fig. 11: Characterization of the products from each step of the synthesis process.

Similar content being viewed by others

Data availability

The data from experiments are summarized in Supporting Information. All data of importance for this protocol have been included either in the main manuscript or supporting information.

References

  1. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Downes, M. et al. M5X4: a family of MXenes. ACS Nano 17, 17158–17168 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Deysher, G. et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Maleski, K., Shuck, C. E., Fafarman, A. T. & Gogotsi, Y. The broad chromatic range of two-dimensional transition metal carbides. Adv. Opt. Mater. 9, 2001563 (2021).

    Article  CAS  Google Scholar 

  5. Salles, P. et al. Electrochromic effect in titanium carbide MXene thin films produced by dip-coating. Adv. Funct. Mater. 29, 1809223 (2019).

    Article  Google Scholar 

  6. Jiang, X. et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 12, 1700229 (2018).

    Article  Google Scholar 

  7. Lipatov, A. et al. Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 6, 1901382 (2020).

    Article  CAS  Google Scholar 

  8. Lipatov, A. et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4, eaat0491 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rosenkranz, A., Righi, M. C., Sumant, A. V., Anasori, B. & Mochalin, V. N. Perspectives of 2D MXene tribology. Adv. Mater. 35, 2207757 (2023).

    Article  CAS  Google Scholar 

  10. Zhang, J. et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018).

    Article  CAS  Google Scholar 

  11. Ding, H. et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130–1135 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Lipatov, A. et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes. Matter 4, 1413–1427 (2021).

    Article  CAS  Google Scholar 

  13. Hantanasirisakul, K. & Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30, 1804779 (2018).

    Article  Google Scholar 

  14. El-Demellawi, J. K. et al. Tuning the work function of Ti3C2Tx MXene by molecular doping without changing its surface functional groups. ACS Mater. Lett. 4, 2480–2490 (2022).

    Article  CAS  Google Scholar 

  15. Zhang, C. (John) et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019).

    Article  PubMed  Google Scholar 

  16. Maleski, K., Mochalin, V. N. & Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017).

    Article  CAS  Google Scholar 

  17. Akuzum, B. et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes. ACS Nano 12, 2685–2694 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Shuck, C. E. et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020).

    Article  CAS  Google Scholar 

  19. Shuck, C. E. & Gogotsi, Y. Taking MXenes from the lab to commercial products. Chem. Eng. J. 401, 125786 (2020).

    Article  CAS  Google Scholar 

  20. Chen, N. et al. Supercritical etching method for the large-scale manufacturing of MXenes. Nano Energy 107, 108147 (2023).

    Article  CAS  Google Scholar 

  21. Li, X. et al. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022).

    Article  PubMed  Google Scholar 

  22. Li, K. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020).

    Article  CAS  Google Scholar 

  23. Huang, K., Li, Z., Lin, J., Han, G. & Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Feng, W. et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Adv. Funct. Mater. 29, 1901942 (2019).

    Article  Google Scholar 

  25. Unal, M. A. et al. 2D MXenes with antiviral and immunomodulatory properties: a pilot study against SARS-CoV-2. Nano Today 38, 101136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He, S. et al. Preparation strategies and applications of MXene-polymer composites: a review. Macromol. Rapid Commun. 42, 2100324 (2021).

    Article  CAS  Google Scholar 

  27. Gong, K., Zhou, K., Qian, X., Shi, C. & Yu, B. MXene as emerging nanofillers for high-performance polymer composites: a review. Compos. Part B Eng. 217, 108867 (2021).

    Article  CAS  Google Scholar 

  28. Iqbal, A., Sambyal, P. & Koo, C. M. 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020).

    Article  CAS  Google Scholar 

  29. Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Han, M. et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Mathis, T. S. et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, X. et al. Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings. ACS Appl. Nano Mater. 3, 10578–10585 (2020).

    Article  CAS  Google Scholar 

  34. Zhang, J. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020).

    Article  CAS  Google Scholar 

  35. Zeraati, A. S. et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13, 3572–3580 (2021).

    Article  Google Scholar 

  36. Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).

    Article  CAS  Google Scholar 

  37. Zhao, X. et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1, 513–526 (2019).

    Article  Google Scholar 

  38. Habib, T. et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. NPJ 2D Mater. Appl. 3, 8 (2019).

    Article  Google Scholar 

  39. Shuck, C. E. et al. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2, 3368–3376 (2019).

    Article  CAS  Google Scholar 

  40. Chae, Y. et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale 11, 8387–8393 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, S. & Mochalin, V. N. Understanding chemistry of two-dimensional transition metal carbides and carbonitrides (MXenes) with gas analysis. ACS Nano 14, 10251–10257 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Natu, V. et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem. 131, 12785–12790 (2019).

    Article  Google Scholar 

  43. Huang, S. et al. Understanding the effect of sodium polyphosphate on improving the chemical stability of Ti3C2Tz MXene in water. J. Mater. Chem. A 10, 22016–22024 (2022).

    Article  CAS  Google Scholar 

  44. Jolly, S., Paranthaman, M. P. & Naguib, M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Mater. Today Adv. 10, 100139 (2021).

    Article  CAS  Google Scholar 

  45. Bärmann, P. et al. Scalable synthesis of MAX phase precursors toward titanium-based MXenes for lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 26074–26083 (2021).

    Article  PubMed  Google Scholar 

  46. Pang, Z. et al. Molten salt electrochemical synthesis of ternary carbide Ti3AlC2 from titanium-rich slag. Adv. Eng. Mater. 22, 1901300 (2020).

    Article  CAS  Google Scholar 

  47. Bao, W. et al. Boosting performance of Na–S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 13, 11500–11509 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Li, C., Kota, S., Hu, C. & Barsoum, M. W. On the synthesis of low-cost, titanium-based MXenes. J. Ceram. Sci. Tech. 7, 301–306 (2016).

    Google Scholar 

  49. von Treifeldt, J. E. et al. The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. Mater. Des. 199, 109403 (2021).

    Article  Google Scholar 

  50. Pazniak, A. et al. Ti3C2Tx MXene characterization produced from SHS-ground Ti3AlC2. Mater. Des. 183, 108143 (2019).

    Article  CAS  Google Scholar 

  51. Wang, X. et al. Structure and electromagnetic properties of Ti3C2Tx MXene derived from Ti3AlC2 with different microstructures. Ceram. Int. 47, 13628–13634 (2021).

    Article  CAS  Google Scholar 

  52. Chen, B. et al. Subsize Ti3C2Tx derived from molten-salt synthesized Ti3AlC2 for enhanced capacitive deionization. Ceram. Int. 47, 3665–3670 (2021).

    Article  CAS  Google Scholar 

  53. Shekhirev, M. et al. Ultralarge flakes of Ti3C2Tx MXene via soft delamination. ACS Nano 16, 13695–13703 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Choi, S. B. et al. Role of oxygen in the Ti3AlC2 MAX phase in the oxide formation and conductivity of Ti3C2-based MXene nanosheets. ACS Appl. Mater. Interfaces 15, 8393–8405 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Michałowski, P. P. et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol. 17, 1192–1197 (2022).

    Article  PubMed  Google Scholar 

  56. Gao, Q. et al. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy Environ. Sci. 13, 2549–2558 (2020).

    Article  CAS  Google Scholar 

  57. Seredych, M. et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31, 3324–3332 (2019).

    Article  CAS  Google Scholar 

  58. Benchakar, M. et al. One MAX phase, different MXenes: a guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry. Appl. Surf. Sci. 530, 147209 (2020).

    Article  CAS  Google Scholar 

  59. Zhao, Q. et al. Adsorption of uremic toxins using Ti3C2Tx MXene for dialysate regeneration. ACS Nano 14, 11787–11798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, Y.-J. et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem. Mater. 33, 6346–6355 (2021).

    Article  CAS  Google Scholar 

  61. Hope, M. A. et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18, 5099–5102 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Sang, X. et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Anayee, M. et al. Kinetics of Ti3AlC2 etching for Ti3C2Tx MXene synthesis. Chem. Mater. 34, 9589–9600 (2022).

    Article  CAS  Google Scholar 

  64. Maleski, K., Ren, C. E., Zhao, M.-Q., Anasori, B. & Gogotsi, Y. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10, 24491–24498 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Inman, A. et al. Shear delamination of multilayer MXenes. J. Mater. Res. 37, 4006–4016 (2022).

    Article  CAS  Google Scholar 

  67. Shekhirev, M. et al. Delamination of Ti3C2Tx nanosheets with NaCl and KCl for improved environmental stability of MXene films. ACS Appl. Nano Mater. 5, 16027–16032 (2022).

    Article  CAS  Google Scholar 

  68. Wang, D. et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 379, 1242–1247 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Jawaid, A. et al. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15, 2771–2777 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, S. et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. 130, 15717–15721 (2018).

    Article  Google Scholar 

  71. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Li, Y. et al. A general lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Urbankowski, P. et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385–11391 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Natu, V. et al. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6, 616–630 (2020).

    Article  CAS  Google Scholar 

  75. Shi, H. et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021).

    Article  CAS  Google Scholar 

  76. Naguib, M. et al. Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Hart, J. L. et al. Multimodal spectroscopic study of surface termination evolution in Cr2TiC2Tx MXene. Adv. Mater. Interfaces 8, 2001789 (2021).

    Article  CAS  Google Scholar 

  79. Hong, W., Wyatt, B. C., Nemani, S. K. & Anasori, B. Double transition-metal MXenes: atomistic design of two-dimensional carbides and nitrides. MRS Bull. 45, 850–861 (2020).

    Article  Google Scholar 

  80. Pinto, D. et al. Synthesis and electrochemical properties of 2D molybdenum vanadium carbides—solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020).

    Article  CAS  Google Scholar 

  81. Han, M. et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc. 142, 19110–19118 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Ahmed, B., Ghazaly, A. E. & Rosen, J. i-MXenes for energy storage and catalysis. Adv. Funct. Mater. 30, 2000894 (2020).

    Article  CAS  Google Scholar 

  83. Lim, K. R. G. et al. Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022).

    Article  Google Scholar 

  84. Ghidiu, M. et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun. 50, 9517–9520 (2014).

    Article  CAS  Google Scholar 

  85. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Anayee, M. et al. Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti3C2Tx MXene. Chem. Commun. 56, 6090–6093 (2020).

    Article  CAS  Google Scholar 

  87. Driscoll, N. et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12, 10419–10429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).

    Article  PubMed  Google Scholar 

  89. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Mashtalir, O., Lukatskaya, M. R., Zhao, M.-Q., Barsoum, M. W. & Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27, 3501–3506 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Lipatov, A. et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016).

    Article  Google Scholar 

  92. Naguib, M., Barsoum, M. W. & Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, 2103393 (2021).

    Article  CAS  Google Scholar 

  93. Wei, Y., Zhang, P., Soomro, R. A., Zhu, Q. & Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 33, 2103148 (2021).

    Article  CAS  Google Scholar 

  94. Verger, L. et al. Overview of the synthesis of mxenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019).

    Article  CAS  Google Scholar 

  95. Verger, L., Natu, V., Carey, M. & Barsoum, M. W. MXenes: an introduction of their synthesis, select properties, and applications. Trends Chem. 1, 656–669 (2019).

    Article  CAS  Google Scholar 

  96. Shekhirev, M., Shuck, C. E., Sarycheva, A. & Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 120, 100757 (2021).

    Article  CAS  Google Scholar 

  97. Shuck, C. E. et al. Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28, 326–338 (2021).

    Article  CAS  Google Scholar 

  98. Lakhe, P. et al. Process safety analysis for Ti3C2Tx MXene synthesis and processing. Ind. Eng. Chem. Res. 58, 1570–1579 (2019).

    Article  CAS  Google Scholar 

  99. Kotasthane, V. et al. Selective etching of Ti3AlC2 MAX phases using quaternary ammonium fluorides directly yields Ti3C2Tz MXene nanosheets: implications for energy storage. ACS Appl. Nano Mater. 6, 1093–1105 (2023).

    Article  CAS  Google Scholar 

  100. Li, M. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, J. et al. Molten salt-shielded synthesis (MS3) of MXenes in air. Energy Environ. Mater. 6, e12328 (2023).

    Article  CAS  Google Scholar 

  102. Liu, L. et al. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano 16, 111–118 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Arole, K. et al. Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience 24, 103403 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li, T. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57, 6115–6119 (2018).

    Article  CAS  Google Scholar 

  105. Wang, C. et al. HCl-based hydrothermal etching strategy toward fluoride-free MXenes. Adv. Mater. 33, 2101015 (2021).

    Article  CAS  Google Scholar 

  106. Yang, Y. et al. Correlating electronic properties with M-site composition in solid solution TiyNb2-yCTx MXenes. 2D Mater. 10, 014011 (2022).

    Article  Google Scholar 

  107. Matthews, K., Zhang, T., Shuck, C. E., VahidMohammadi, A. & Gogotsi, Y. Guidelines for synthesis and processing of chemically stable two-dimensional V2CTx MXene. Chem. Mater. 34, 499–509 (2022).

    Article  CAS  Google Scholar 

  108. Mendoza-Sánchez, B. et al. Systematic study of the multiple variables involved in V2AlC acid-based etching processes, a key step in MXene synthesis. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.3c01671 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Alhabeb, M. et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. 130, 5542–5546 (2018).

    Article  Google Scholar 

  110. Forsberg, K., Van den Borre, A., Henry, N. III & Zeigler, J. P. Quick Selection Guide to Chemical Protective Clothing 7th edn (John Wiley & Sons, 2020).

Download references

Acknowledgements

This work was supported by the US National Science Foundation, grant CHE- 2318105. The authors affirm the human participants provided informed consent for publication for Supplementary Fig. 4. R.J. Wang is thanked for proofreading the manuscript. XRD and SEM analyses were performed using instruments in the Materials Characterization Core at Drexel University.

Author information

Authors and Affiliations

Authors

Contributions

M.D., C.E.S. and Y.G. conceived the experimental plan. B.M. and J.B. took the experimental setup photographs for figures and measured film conductivity. M.D., C.E.S. and B.M. synthesized the large batch to test the different delaminating agents. M.D. and C.E.S. prepared the MAX phase precursors, performed XRD characterization and drafted the manuscript. M.D. and B.M. performed the DLS measurements. All authors reviewed and edited the final manuscript.

Corresponding author

Correspondence to Yury Gogotsi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Junwei Gu, Hao-Bin Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Naguib, M. et al. Adv. Mater. 23, 4248–4253 (2011): https://doi.org/10.1002/adma.201102306

Alhabeb, M. et al. Chem. Mater. 29, 7633–7644 (2017): https://doi.org/10.1021/acs.chemmater.7b02847

Shekhirev, M. et al. Prog. Mater. Sci. 120, 100757 (2021): https://doi.org/10.1016/j.pmatsci.2020.100757

Mathis, T. S. et al. ACS Nano 15, 6420–6429 (2021): https://doi.org/10.1021/acsnano.0c08357

Shuck, C. E. et al. ACS Chem. Health Saf. 28, 326–338 (2021): https://doi.org/10.1021/acs.chas.1c00051

Sarycheva, A. et al. ACS Nano, 16, 6858–6865 (2022): https://doi.org/10.1021/acsnano.2c01868

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1 and 2 and Discussion.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Downes, M., Shuck, C.E., McBride, B. et al. Comprehensive synthesis of Ti3C2Tx from MAX phase to MXene. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00969-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing