Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fundamentals of MXene synthesis

Abstract

Since the first report on Ti3C2Tx in 2011, the family of two-dimensional transition metal carbides, nitrides, and carbonitrides (MXenes) has increased substantially to include single and multi-element MXenes, with many more yet to be synthesized but predicted to possess attractive properties. To synthesize these elusive MXenes as well as to improve and scale up the manufacturing of known MXenes, a deeper mechanistic understanding of their synthesis processes is necessary, from the precursors to the etching–exfoliation and final intercalation–delamination steps. Here we examine computational modelling and in situ and ex situ characterization data to rationalize the reactivity and selectivity of MXenes towards various common etching and delamination methods. We discuss the effects of MAX phases, the predominant precursor, and other non-MAX layered materials on MXene synthesis and their resultant properties. Finally, we summarize the parameters behind successful (and unsuccessful) etching and delamination protocols. By highlighting the factors behind each step, we hope to guide the future development of MXenes with improved quality, yield and tunable properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of MXenes.
Fig. 2: Relating the chemistry of mono-transition metal MXene precursor phases to their exfoliation energy.
Fig. 3: Effect of the MAX synthesis method on the mono-transition metal MXene produced.
Fig. 4: Top–down etching routes for MXene synthesis.
Fig. 5: Mechanism of HF-based etching and exfoliation.
Fig. 6: Intercalation–delamination mechanisms.

Similar content being viewed by others

References

  1. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Gogotsi, Y. & Huang, Q. MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Shayesteh Zeraati, A. et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield and enhanced capacitance. Nanoscale 13, 3572–3580 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J. & Zhang, C. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021).

    Article  CAS  Google Scholar 

  7. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Lipatov, A. et al. Electrical and elastic properties of individual single‐layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 6, 1901382 (2020).

    Article  CAS  Google Scholar 

  9. Lim, K. R. G. et al. Rational design of two-dimensional transition metal Carbide/Nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 14, 10834–10864 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Saravanan, P., Rajeswari, S., Kumar, J. A., Rajasimman, M. & Rajamohan, N. Bibliometric analysis and recent trends on MXene research—a comprehensive review. Chemosphere 286, 131873 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Wei, Y., Zhang, P., Soomro, R. A., Zhu, Q. & Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 33, 2103148 (2021).

    Article  CAS  Google Scholar 

  12. Anasori, B. & Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications (Springer, 2019); https://doi.org/10.1007/978-3-030-19026-2

  13. Wyatt, B. C., Rosenkranz, A. & Anasori, B. 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33, 2007973 (2021).

    Article  CAS  Google Scholar 

  14. Hope, M. A. et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18, 5099–5102 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Naguib, M., Unocic, R. R., Armstrong, B. L. & Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides ‘MXenes’. Dalton Trans. 44, 9353–9358 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Nemani, S. K. et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021).

    Article  CAS  Google Scholar 

  19. Zhou, J. et al. High-entropy laminate metal carbide (MAX Phase) and its two-dimensional derivative MXene. Chem. Mater. 34, 2098–2106 (2022).

    Article  CAS  Google Scholar 

  20. Naguib, M., Barsoum, M. W. & Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, 2103393 (2021).

    Article  CAS  Google Scholar 

  21. Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).

    Article  CAS  Google Scholar 

  22. Zhang, J. et al. Scalable manufacturing of free‐standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020).

    Article  CAS  Google Scholar 

  23. Shuck, C. E. et al. Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28, 326–338 (2021).

    Article  CAS  Google Scholar 

  24. Verger, L., Natu, V., Carey, M. & Barsoum, M. W. MXenes: an introduction of their synthesis, select properties and applications. Trends Chem. 1, 656–669 (2019).

    Article  CAS  Google Scholar 

  25. Shuck, C. E. et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020).

    Article  CAS  Google Scholar 

  26. Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Fan, Y. et al. Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals. Adv. Funct. Mater. 32, 2111357 (2022).

    Article  CAS  Google Scholar 

  28. Oyama, S. T. (ed.) The Chemistry of Transition Metal Carbides and Nitrides (Springer, 1996); https://doi.org/10.1007/978-94-009-1565-7

  29. Oyama, S. T. Preparation and catalytic properties of transition metal carbides and nitrides. Catal. Today 15, 179–200 (1992).

    Article  CAS  Google Scholar 

  30. Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, B. & Talmy, I. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. Electrochem. Soc. Interface 16, 30–36 (2007).

    Article  CAS  Google Scholar 

  31. Han, M. et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc. 142, 19110–19118 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Hantanasirisakul, K. et al. Evidence of a magnetic transition in atomically thin Cr2TiC2Tx MXene. Nanoscale Horiz. 5, 1557–1565 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, J. et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11, 3841–3850 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Tao, Q. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hong, W., Wyatt, B. C., Nemani, S. K. & Anasori, B. Double transition-metal MXenes: atomistic design of two-dimensional carbides and nitrides. MRS Bull. 45, 850–861 (2020).

    Article  CAS  Google Scholar 

  36. Sokol, M., Natu, V., Kota, S. & Barsoum, M. W. On the chemical diversity of the MAX phases. Trends Chem. 1, 210–223 (2019).

    Article  CAS  Google Scholar 

  37. Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2019).

    Article  CAS  Google Scholar 

  38. Weidman, M. C., Esposito, D. V., Hsu, Y.-C. & Chen, J. G. Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J. Power Sources 202, 11–17 (2012).

    Article  CAS  Google Scholar 

  39. Mikeska, K. R., Bennison, S. J. & Grise, S. L. Corrosion of ceramics in aqueous hydrofluoric acid. J. Am. Ceram. Soc. 83, 1160–1164 (2004).

    Article  Google Scholar 

  40. Khaledialidusti, R., Khazaei, M., Khazaei, S. & Ohno, K. High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 13, 7294–7307 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Gkountaras, A. et al. Mechanical exfoliation of select MAX Phases and Mo4Ce4Al7C3 single crystals to produce MAXenes. Small 16, 1905784 (2020).

    Article  CAS  Google Scholar 

  42. Dahlqvist, M. & Rosen, J. Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases. Nanoscale 12, 785–794 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Dahlqvist, M., Petruhins, A., Lu, J., Hultman, L. & Rosen, J. Origin of chemically ordered atomic laminates (i-MAX): expanding the elemental space by a theoretical/experimental approach. ACS Nano 12, 7761–7770 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Khazaei, M. et al. Insights into exfoliation possibility of MAX phases to MXenes. Phys. Chem. Chem. Phys. 20, 8579–8592 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Urbankowski, P. et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385–11391 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Magnuson, M. & Mattesini, M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 621, 108–130 (2017).

    Article  CAS  Google Scholar 

  47. Johnson, D., Qiao, Z., Uwadiunor, E. & Djire, A. Holdups in Nitride MXene’s development and limitations in advancing the field of MXene. Small 18, 2106129 (2022).

    Article  CAS  Google Scholar 

  48. Han, M. et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Alhabeb, M. et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57, 5444–5448 (2018).

    Article  CAS  Google Scholar 

  50. Meshkian, R. et al. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scr. Mater. 108, 147–150 (2015).

    Article  CAS  Google Scholar 

  51. Halim, J. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26, 3118–3127 (2016).

    Article  CAS  Google Scholar 

  52. Lapauw, T. et al. Synthesis of MAX phases in the Hf-Al-C system. Inorg. Chem. 55, 10922–10927 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Sun, Z., Zou, Y., Tada, S. & Hashimoto, H. Effect of Al addition on pressureless reactive sintering of Ti3SiC2. Scr. Mater. 55, 1011–1014 (2006).

    Article  CAS  Google Scholar 

  54. Perevislov, S. N., Sokolova, T. V. & Stolyarova, V. L. The Ti3SiC2 MAX phases as promising materials for high temperature applications: formation under various synthesis conditions. Mater. Chem. Phys. 267, 124625 (2021).

    Article  CAS  Google Scholar 

  55. Mathis, T. S. et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Naguib, M. et al. Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, W. et al. Synthesis and formation mechanism of high‐purity Ti3AlC2 powders by microwave sintering. Int. J. Appl. Ceram. Technol. 17, 778–789 (2020).

    Article  CAS  Google Scholar 

  58. Li, M. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Sychev, A. E., Busurina, M. L., Sachkova, N. V. & Vrel, D. Interaction of graphite with a Ti-Al melt during self-propagating high-temperature synthesis. Inorg. Mater. 55, 780–784 (2019).

    Article  CAS  Google Scholar 

  60. Fonseca, A. F. et al. Titanium-carbide formation at defective curved graphene-titanium interfaces. MRS Adv. 3, 457–462 (2018).

    Article  CAS  Google Scholar 

  61. Shuck, C. E. et al. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2, 3368–3376 (2019).

    Article  CAS  Google Scholar 

  62. Riley, D. P. & Kisi, E. H. The design of crystalline precursors for the synthesis of Mn – 1AXn phases and their application to Ti3AlC2. J. Am. Ceram. Soc. 90, 2231–2235 (2007).

    Article  CAS  Google Scholar 

  63. Sarycheva, A. et al. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Verger, L. et al. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019).

    Article  CAS  Google Scholar 

  65. Li, T. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57, 6115–6119 (2018).

    Article  CAS  Google Scholar 

  66. Chen, H., Ma, H. & Li, C. Host-guest intercalation chemistry in MXenes and its implications for practical applications. ACS Nano 15, 15502–15537 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, S. et al. Fluoride‐free synthesis of two‐dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018).

    Article  CAS  Google Scholar 

  68. Pang, S.-Y. et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Jawaid, A. et al. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15, 2771–2777 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Shi, H. et al. Ambient‐stable two‐dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021).

    Article  CAS  Google Scholar 

  71. Shen, M. et al. One‐pot green process to synthesize MXene with controllable surface terminations using molten salts. Angew. Chem. Int. Ed. 60, 27013–27018 (2021).

    Article  CAS  Google Scholar 

  72. Sun, Z. et al. Selective lithiation-expansion-microexplosion synthesis of two-dimensional fluoride-free MXene. ACS Mater. Lett. 1, 628–632 (2019).

    Article  CAS  Google Scholar 

  73. Natu, V. et al. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6, 616–630 (2020).

    Article  CAS  Google Scholar 

  74. Soundiraraju, B. & George, B. K. Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11, 8892–8900 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Djire, A., Zhang, H., Liu, J., Miller, E. M. & Neale, N. R. Electrocatalytic and optoelectronic characteristics of the two-dimensional titanium nitride Ti4N3Tx MXene. ACS Appl. Mater. Interfaces 11, 11812–11823 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, J. et al. Molten salt shielded synthesis (MS3) of MXene in air. Energy Environ. Mater. https://doi.org/10.1002/eem2.12328 (2021).

  77. Bärmann, P. et al. Scalable synthesis of MAX phase precursors toward titanium-based MXenes for lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 26074–26083 (2021).

    Article  PubMed  CAS  Google Scholar 

  78. Ma, G. et al. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 12, 5085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, L. et al. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano 16, 111–118 (2022).

    Article  CAS  Google Scholar 

  80. Seredych, M. et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31, 3324–3332 (2019).

    Article  CAS  Google Scholar 

  81. Lu, J. et al. Tin + 1Cn MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Adv. 1, 3680–3685 (2019).

    Article  CAS  Google Scholar 

  82. Lee, J. T. et al. Covalent surface modification of Ti3C2Tx MXene with chemically active polymeric ligands producing highly conductive and ordered microstructure films. ACS Nano 15, 19600–19612 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Srivastava, P., Mishra, A., Mizuseki, H., Lee, K.-R. & Singh, A. K. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl. Mater. Interfaces 8, 24256–24264 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Ibragimova, R., Erhart, P., Rinke, P. & Komsa, H.-P. Surface functionalization of 2D MXenes: trends in distribution, composition and electronic properties. J. Phys. Chem. Lett. 12, 2377–2384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, Y.-J. et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem. Mater. 33, 6346–6355 (2021).

    Article  CAS  Google Scholar 

  87. Kim, Y. et al. Elementary processes governing V2AlC chemical etching in HF. RSC Adv. 10, 25266–25274 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mashtalir, O., Naguib, M., Dyatkin, B., Gogotsi, Y. & Barsoum, M. W. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys. 139, 147–152 (2013).

    Article  CAS  Google Scholar 

  89. Meng, F. et al. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano 12, 10518–10528 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Li, Y., Huang, S., Wei, C., Wu, C. & Mochalin, V. N. Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon. Nat. Commun. 10, 3014 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhou, X., Guo, Y., Wang, D. & Xu, Q. Nano friction and adhesion properties on Ti3C2 and Nb2C MXene studied by AFM. Tribol. Int. 153, 106646 (2021).

    Article  CAS  Google Scholar 

  92. Maleski, K., Mochalin, V. N. & Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017).

    Article  CAS  Google Scholar 

  93. Kim, D. et al. Nonpolar organic dispersion of 2D Ti3C2Tx MXene flakes via simultaneous interfacial chemical grafting and phase transfer method. ACS Nano 13, 13818–13828 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Voigt, C. A., Ghidiu, M., Natu, V. & Barsoum, M. W. Anion adsorption, Ti3C2Tz MXene multilayers, and their effect on claylike swelling. J. Phys. Chem. C 122, 23172–23179 (2018).

    Article  CAS  Google Scholar 

  95. Kajiyama, S. et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination. Adv. Energy Mater. 7, 1601873 (2017).

    Article  CAS  Google Scholar 

  96. Natu, V. et al. Effect of base/nucleophile treatment on interlayer ion intercalation, surface terminations, and osmotic swelling of Ti3C2Tz MXene multilayers. Chem. Mater. 34, 678–693 (2022).

    Article  CAS  Google Scholar 

  97. Zhao, X. et al. pH, nanosheet concentration and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Adv. Mater. Interfaces 7, 2000845 (2020).

    Article  CAS  Google Scholar 

  98. Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shpigel, N. et al. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique. J. Am. Chem. Soc. 140, 8910–8917 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Gao, Q. et al. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy Environ. Sci. 13, 2549–2558 (2020).

    Article  CAS  Google Scholar 

  101. Chen, H. et al. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 1906996 (2020).

    Article  CAS  Google Scholar 

  102. Deng, Y. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019).

    Article  CAS  Google Scholar 

  103. Chen, H. et al. Pristine titanium carbide MXene hydrogel matrix. ACS Nano 14, 10471–10479 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, J. et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018).

    Article  CAS  Google Scholar 

  106. Li, G. et al. 2D titanium carbide (MXene) based films: expanding the frontier of functional film materials. Adv. Funct. Mater. 31, 2105043 (2021).

    Article  CAS  Google Scholar 

  107. Li, Y. et al. Multielemental single-atom-thick A layers in nanolaminated V2(Sn, A)C (A = Fe, Co, Ni, Mn) for tailoring magnetic properties. Proc. Natl Acad. Sci. USA 117, 820–825 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Jakubczak, M., Szuplewska, A., Rozmysłowska‐Wojciechowska, A., Rosenkranz, A. & Jastrzębska, A. M. Novel 2D MBenes—synthesis, structure and biotechnological potential. Adv. Funct. Mater. 31, 2103048 (2021).

    Article  CAS  Google Scholar 

  109. Kumar, H. et al. Tunable magnetism and transport properties in nitride MXenes. ACS Nano 11, 7648–7655 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Cao, F. et al. Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 34, 2107554 (2022).

    Article  CAS  Google Scholar 

  111. Cui, W., Hu, Z.-Y., Unocic, R. R., Van Tendeloo, G. & Sang, X. Atomic defects, functional groups and properties in MXenes. Chin. Chem. Lett. 32, 339–344 (2021).

    Article  CAS  Google Scholar 

  112. Jolly, S., Paranthaman, M. P. & Naguib, M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Mater. Today Adv. 10, 100139 (2021).

    Article  CAS  Google Scholar 

  113. Seh, Z. W. et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016).

    Article  CAS  Google Scholar 

  114. Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Bhardwaj, R. & Hazra, A. MXene-based gas sensors. J. Mater. Chem. C 9, 15735–15754 (2021).

    Article  CAS  Google Scholar 

  116. Zamhuri, A., Lim, G. P., Ma, N. L., Tee, K. S. & Soon, C. F. MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomed. Eng. Online 20, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Song, M., Pang, S., Guo, F., Wong, M. & Hao, J. Fluoride‐free 2D niobium carbide MXenes as stable and biocompatible nanoplatforms for electrochemical biosensors with ultrahigh sensitivity. Adv. Sci. 7, 2001546 (2020).

    Article  CAS  Google Scholar 

  118. Xuan, J. et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55, 14569–14574 (2016).

    Article  CAS  Google Scholar 

  119. Halim, J. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hantanasirisakul, K. et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31, 2941–2951 (2019).

    Article  CAS  Google Scholar 

  121. Maleski, K., Shuck, C. E., Fafarman, A. T. & Gogotsi, Y. The broad chromatic range of two‐dimensional transition metal carbides. Adv. Opt. Mater. 9, 2001563 (2021).

    Article  CAS  Google Scholar 

  122. Anasori, B. et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 1, 227–234 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.R.G.L. acknowledges financial support from the Agency for Science, Technology and Research (A*STAR) Singapore National Science Scholarship (PhD). B.C.W. acknowledges financial support from the National Defense Engineering & Science Graduate Fellowship Program. M.S. acknowledges financial support from Murata Manufacturing, Japan. B.A. acknowledges funding from the US National Science Foundation (grant no. CMMI-2134607). Y.G. acknowledges funding from the US National Science Foundation (grant no. DMR-2041050). Z.W.S. acknowledges the support of the Singapore National Research Foundation (NRF-NRFF2017-04) and Agency for Science, Technology and Research (Central Research Fund Award).

Author information

Authors and Affiliations

Authors

Contributions

K.R.G.L., M.S. and B.C.W. conducted the literature review and wrote the manuscript under the supervision of B.A., Y.G. and Z.W.S. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Babak Anasori, Yury Gogotsi or Zhi Wei Seh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Qing Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Fig. 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, K.R.G., Shekhirev, M., Wyatt, B.C. et al. Fundamentals of MXene synthesis. Nat. Synth 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00104-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing