Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers

Abstract

Integrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges. Here, we present a modular approach consisting of two separate procedures. The first procedure instructs users on how to efficiently integrate different types of lasers into living cells, and the second procedure presents a workflow for obtaining intracellular lasing spectra with high spectral resolution and up to 125-kHz readout rate and starts from the construction of a custom hyperspectral confocal microscope. We provide guidance on running hyperspectral imaging routines for various experimental designs and recommend specific workflows for processing the resulting large data sets along with an open-source Python library of functions covering the analysis pipeline. We illustrate three applications including the rapid, large-volume mapping of absolute refractive index by using polystyrene microbead lasers, the intracellular sensing of cardiac contractility with polystyrene microbead lasers and long-term cell tracking by using semiconductor nanodisk lasers. Our sample preparation and imaging procedures require 2 days, and setting up the hyperspectral confocal microscope for microlaser characterization requires <2 weeks to complete for users with limited experience in optical and software engineering.

Key points

  • The protocol describes the integration of microlasers into living cells and a workflow for obtaining lasing spectra with high spectral resolution using a customized hyperspectral confocal microscope.

  • Bio-integrated lasers enable high-throughput and highly multiplexed cell-tracking and biosensing, offering higher penetration depth and information density than alternative approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Properties and applications of bio-integrated WGM laser particles.
Fig. 2: Schematic of the protocol workflow.
Fig. 3: Home-built confocal microscope.
Fig. 4: Controling internalization of LPs.
Fig. 5: Microscope overview.
Fig. 6: Coarse pinhole alignment.
Fig. 7: Typical results of reference measurements.
Fig. 8: Application examples of cell tracking and sensing with LPs.

Similar content being viewed by others

Data availability

The research data supporting this publication can be accessed at https://doi.org/10.17630/bec9180a-86e6-4157-822f-fa84249452dd56.

Code availability

A repository containing the supplementary code files can be found at https://github.com/GatherLab/sphyncs55. Custom hardware control software is available upon request.

References

  1. Schubert, M. et al. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett. 15, 5647–5652 (2015).

    ADS  CAS  PubMed  Google Scholar 

  2. Humar, M. & Yun, S. H. Intracellular microlasers. Nat. Photonics 9, 572–576 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schubert, M. et al. Lasing in live mitotic and non-phagocytic cells by efficient delivery of microresonators. Sci. Rep. 7, 40877 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, X. et al. In vivo tracking of individual stem cells labeled with nanowire lasers using multimodality imaging. Biomed. Opt. Express 13, 4706–4717 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Martino, N. et al. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat. Photonics 13, 720–727 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Foreman, M. R., Swaim, J. D. & Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 7, 168–240 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Su, J. Label-free biological and chemical sensing using whispering gallery mode optical resonators: past, present, and future. Sens. (Basel) 17, 540 (2017).

    ADS  Google Scholar 

  8. Schubert, M. et al. Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers. Nat. Photonics 14, 452–458 (2020).

    ADS  CAS  Google Scholar 

  9. Kavčič, A. et al. Deep tissue localization and sensing using optical microcavity probes. Nat. Commun. 13, 1269 (2022).

    ADS  PubMed  PubMed Central  Google Scholar 

  10. Titze, V. M., Caixeiro, S., Di Falco, A., Schubert, M. & Gather, M. C. Red-shifted excitation and two-photon pumping of biointegrated GaInP/AlGaInP quantum well microlasers. ACS Photonics 9, 952–960 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gather, M. C. & Yun, S. H. Single-cell biological lasers. Nat. Photonics 5, 406–410 (2011).

    ADS  CAS  Google Scholar 

  12. Wei, Y. et al. Starch-based biological microlasers. ACS Nano 11, 597–602 (2017).

    CAS  PubMed  Google Scholar 

  13. Humar, M. & Yun, S. H. Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies. Optica 4, 222–228 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, S. S., Kim, J. B., Kim, Y. H. & Kim, S.-H. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals. Sci. Adv. 4, 8276–8298 (2018).

    ADS  Google Scholar 

  15. Hales, J. E., Matmon, G., Dalby, P. A., Ward, J. M. & Aeppli, G. Virus lasers for biological detection. Nat. Commun. 10, 3594 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  16. Xu, Z. et al. Random lasing from label-free living cells for rapid cytometry of apoptosis. Nano Lett. 22, 172–178 (2022).

    ADS  CAS  PubMed  Google Scholar 

  17. Fikouras, A. H. et al. Non-obstructive intracellular nanolasers. Nat. Commun. 9, 4817 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  18. Lv, Z. et al. Intracellular near-infrared microlaser probes based on organic microsphere-SiO2 core-shell structures for cell tagging and tracking. ACS Appl. Mater. Interfaces 10, 32981–32987 (2018).

    ADS  CAS  PubMed  Google Scholar 

  19. Tang, S.-J. et al. Laser particles with omnidirectional emission for cell tracking. Light Sci. Appl. 10, 23 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang, S. K. Y. et al. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9, 2767–2771 (2009).

    CAS  PubMed  Google Scholar 

  21. Richter, D., Marinčič, M. & Humar, M. Optical-resonance-assisted generation of super monodisperse microdroplets and microbeads with nanometer precision. Lab Chip 20, 734–740 (2020).

    CAS  PubMed  Google Scholar 

  22. Humar, M., Muševič, I., Sullivan, K. G. & Hall, D. G. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt. Express 18, 26995–27003 (2010).

    ADS  CAS  PubMed  Google Scholar 

  23. Chen, Y. C. et al. Monitoring neuron activities and interactions with laser emissions. ACS Photonics 7, 2182–2189 (2020).

    CAS  Google Scholar 

  24. Wu, X. et al. Nanowire lasers as intracellular probes. Nanoscale 10, 9729–9735 (2018).

    CAS  PubMed  Google Scholar 

  25. Hua, B., Motohisa, J., Kobayashi, Y., Hara, S. & Fukui, T. Single GaAs/GaAsP coaxial core−shell nanowire lasers. Nano Lett. 9, 112–116 (2009).

    ADS  CAS  PubMed  Google Scholar 

  26. Feng, C. et al. Organic-nanowire-SiO2 core-shell microlasers with highly polarized and narrow emissions for biological imaging. ACS Appl. Mater. Interfaces 9, 7385–7391 (2017).

    CAS  PubMed  Google Scholar 

  27. Fernandez-Bravo, A. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 13, 572–577 (2018).

    ADS  CAS  PubMed  Google Scholar 

  28. Wang, S. et al. High-yield plasmonic nanolasers with superior stability for sensing in aqueous solution. ACS Photonics 4, 1355–1360 (2017).

    CAS  Google Scholar 

  29. Caixeiro, S., Gaio, M., Marelli, B., Omenetto, F. G. & Sapienza, R. Silk-based biocompatible random lasing. Adv. Opt. Mater. 4, 998–1003 (2016).

    CAS  Google Scholar 

  30. Mysliwiec, J., Cyprych, K., Sznitko, L. & Miniewicz, A. Biomaterials in light amplification. J. Opt. 19, 033003 (2017).

    ADS  Google Scholar 

  31. Cho, S., Yang, Y., Soljačić, M. & Yun, S. H. Submicrometer perovskite plasmonic lasers at room temperature. Sci. Adv. 7, 3362–3387 (2021).

    ADS  Google Scholar 

  32. Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16, 634–644 (2016).

    ADS  CAS  PubMed  Google Scholar 

  33. Chan, K. K. et al. Monitoring amyloidogenesis with a 3D deep-learning-guided biolaser imaging array. Nano Lett. 22, 8949–8956 (2022).

    ADS  CAS  PubMed  Google Scholar 

  34. Chen, Q. et al. Highly sensitive fluorescent protein FRET detection using optofluidic lasers. Lab Chip 13, 2679–2681 (2013).

    CAS  PubMed  Google Scholar 

  35. Oki, O. et al. FRET-mediated near infrared whispering gallery modes: studies on the relevance of intracavity energy transfer with Q-factors. Mater. Chem. Front. 2, 270–274 (2018).

    CAS  Google Scholar 

  36. Yuan, Z., Wang, Z., Guan, P., Wu, X. & Chen, Y. C. Lasing-encoded microsensor driven by interfacial cavity resonance energy transfer. Adv. Opt. Mater. 8, 1–9 (2020).

    CAS  Google Scholar 

  37. Wang, Y. et al. Demonstration of intracellular real-time molecular quantification via FRET-enhanced optical microcavity. Nat. Commun. 13, 6685 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, X. et al. Optical coherence tomography and fluorescence microscopy dual-modality imaging for in vivo single-cell tracking with nanowire lasers. Biomed. Opt. Express 11, 3659–3672 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gratton, S. E. A. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016).

    ADS  CAS  PubMed  Google Scholar 

  42. Stewart, M. P., Langer, R. & Jensen, K. F. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118, 7409–7531 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, Y. C. et al. Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat. Methods 12, 439–444 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cho, S., Humar, M., Martino, N. & Yun, S. H. Laser particle stimulated emission microscopy. Phys. Rev. Lett. 117, 193902 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  45. Humar, M., Upadhya, A. & Yun, S. H. Spectral reading of optical resonance-encoded cells in microfluidics. Lab Chip 17, 2777–2784 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dannenberg, P. H. et al. Laser particle activated cell sorting in microfluidics. Lab Chip 22, 2343–2351 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bednarkiewicz, A., Chan, E. M., Kotulska, A., Marciniak, L. & Prorok, K. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz. 4, 881–889 (2019).

    ADS  CAS  Google Scholar 

  48. Hill, M. T. & Gather, M. C. Advances in small lasers. Nat. Photonics 8, 908–918 (2014).

    ADS  CAS  Google Scholar 

  49. Dannenberg, P. H. et al. Droplet microfluidic generation of a million optical microparticle barcodes. Opt. Express 29, 38109–38118 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liapis, A. C. et al. Conformal coating of freestanding particles by vapor-phase infiltration. Adv. Mater. Interfaces 7, 2001323 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  52. Ferrand, P. GPScan.VI: a general-purpose LabVIEW program for scanning imaging or any application requiring synchronous analog voltage generation and data acquisition. Comput. Phys. Commun. 192, 342–347 (2015).

    ADS  CAS  Google Scholar 

  53. Sofroniew, N. et al. napari: a multi-dimensional image viewer for python. Zenodo https://doi.org/10.5281/zenodo.8115575 (2022).

  54. Allan, D. B., Caswell, T., Keim, N. C., van der Wel, C. M. & Verweij, R. W. soft-matter/trackpy: Trackpy v0.6.1. Zenodo https://doi.org/10.5281/zenodo.7670439 (2021).

  55. Titze, V. M., Caixeiro, S., Schubert, M. & Gather, M. C. GatherLab/sphyncs. Zenodo https://doi.org/10.5281/zenodo.8121099 (2023).

  56. Titze, V. M. et al. Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers (dataset). Available at https://doi.org/10.17630/bec9180a-86e6-4157-822f-fa84249452dd (2023).

  57. Caixeiro, S. et al. Micro and nano lasers from III-V semiconductors for intracellular sensing. In Enhanced Spectroscopies and Nanoimaging 2020 Vol. 11468, 1146811 (eds. Verma, P. & Suh, Y. D.) (SPIE, 2020).

  58. Rübsam, M. et al. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat. Commun. 8, 1250 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  59. Dannenberg, P. H. et al. Facile layer-by-layer fabrication of semiconductor microdisk laser particles. APL Photonics 8, 021301 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, D. et al. Whispering-gallery-mode sensors for biological and physical sensing. Nat. Rev. Methods Prim. 1, 83 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Klara Voelckert and Manuel Neubauer for their contributions to lasing data acquisition, and Viktor Klippert and Thomas Michaelis for assistance with the design of custom adapters. This work received financial support from the Leverhulme Trust (RPG-2017-231), the European Union’s Horizon 2020 Framework Programme (FP/2014-2020)/ERC grant agreement no. 640012 (ABLASE), EPSRC (EP/P030017/1), the Humboldt Foundation (Alexander von Humboldt professorship) and the RS Macdonald Charitable Trust (St Andrews Seedcorn Fund for Neurological Research). M.S. acknowledges funding from the European Commission (Marie Skłodowska-Curie Individual Fellowship, 659213) and the Royal Society (Dorothy Hodgkin Fellowship, DH160102; Research Grant, RGF\R1\180070; Enhancement Award, RGF\EA\180051).

Author information

Authors and Affiliations

Authors

Contributions

V.M.T., M.S. and M.C.G. designed and planned the microscope. V.M.T. and V.S.D. constructed and automated the microscope. S.C., M.K., N.P. and M.S. prepared laser particles and developed the cell uptake assay. M.K., A.-L.S., M.G. and C.K. carried out cell and laser particle sorting experiments. C.M.N. and M.C.G. conceptualized the cell-tracking experiment, which was conducted by V.M.T., S.C. and M.R. V.M.T. and S.C. performed the high-throughput sensing experiment. V.M.T., S.C. and M.S. contributed to the analysis software. M.S. and M.C.G. supervised the project. V.M.T., M.S. and M.C.G. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Vera M. Titze, Marcel Schubert or Malte C. Gather.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Paul Dannenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Schubert, M. et al. Sci. Rep. 7, 40877 (2017): https://doi.org/10.1038/srep40877

Schubert, M. et al. Nat. Photonics 14, 452–458 (2020): https://doi.org/10.1038/s41566-020-0631-z

Titze, V. M. et al. ACS Photonics 9, 952–960 (2022): https://doi.org/10.1021/acsphotonics.1c01807

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–15 and Tables 1–3

Reporting Summary

Supplementary Video

Dynamic refractive index sensing of glucose diffusion. x-y maximum intensity projection (MIP) (left) and x-z MIP (center) of the hyperspectral confocal z-stack, color-coded by fitted refractive index, with exemplary raw lasing spectra and calculated external refractive index changes (right). All panels are synchronized.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titze, V.M., Caixeiro, S., Dinh, V.S. et al. Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers. Nat Protoc 19, 928–959 (2024). https://doi.org/10.1038/s41596-023-00924-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00924-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing