Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo identification of astrocyte and neuron subproteomes by proximity-dependent biotinylation

Abstract

The central nervous system (CNS) comprises diverse and morphologically complex cells. To understand the molecular basis of their physiology, it is crucial to assess proteins expressed within intact cells. Commonly used methods utilize cell dissociation and sorting to isolate specific cell types such as neurons and astrocytes, the major CNS cells. Proteins purified from isolated cells are identified by mass spectrometry-based proteomics. However, dissociation and cell-sorting methods lead to near total loss of cellular morphology, thereby losing proteins from key relevant subcompartments such as processes, end feet, dendrites and axons. Here we provide a systematic protocol for cell- and subcompartment-specific labeling and identification of proteins found within intact astrocytes and neurons in vivo. This protocol utilizes the proximity-dependent biotinylation system BioID2, selectively expressed in either astrocytes or neurons, to label proximal proteins in a cell-specific manner. BioID2 is targeted genetically to assess the subproteomes of subcellular compartments such as the plasma membrane and sites of cell–cell contacts. We describe in detail the expression methods (variable timing), stereotaxic surgeries for expression (1–2 d and then 3 weeks), in vivo protein labeling (7 d), protein isolation (2–3 d), protein identification methods (2–3 d) and data analysis (1 week). The protocol can be applied to any area of the CNS in mouse models of physiological processes and for disease-related research.

Key points

  • Astrocyte- and neuron-specific proximity-dependent biotinylation enables identification of a cell’s subproteome by targeting BioID2 to the cytosol using adeno-associated virus plasmid vectors, or to the plasma membranes using an Lck plasma membrane tag.

  • Alternative in vivo proximity-dependent labeling approaches are TurboID, genetically targeted horseradish peroxidase and ascorbate peroxidase. Here, two BioID2 enzymes are fused to increase the catalytic activity of the approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for in vivo BioID2 in the CNS.
Fig. 2: Studying morphologically complex and intact cells with in vivo BioID2.
Fig. 3: Example data validating in vivo BioID2.
Fig. 4: Example experimental design for an in vivo BioID2 proteomics experiment.
Fig. 5: Proteomic data analysis using artMS with integrated MSStats.

Similar content being viewed by others

Data availability

The authors declare that the main data and all the raw source data discussed in this protocol are available in the supporting primary research paper6. The raw datasets are available at the Proteomics Identification Database with accession identifier PXD029257. Any data are available for research purposes from the corresponding authors upon reasonable request.

References

  1. Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109, 576–596 (2021).

    CAS  PubMed  Google Scholar 

  4. Khakh, B. S. & Deneen, B. The emerging nature of astrocyte diversity. Annu. Rev. Neurosci. 42, 187–207 (2019).

    CAS  PubMed  Google Scholar 

  5. Ben Haim, L. & Rowitch, D. H. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18, 31–41 (2017).

    CAS  PubMed  Google Scholar 

  6. Soto, J. S. et al. Astrocyte-neuron subproteomes and obsessive-compulsive disorder mechanisms. Nature 616, 764–773 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Uezu, A. et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science 353, 1123–1129 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heffernan, K. S., Rahman, K., Smith, Y. & Galvan, A. Characterization of the GfaABC1D promoter to selectively target astrocytes in the rhesus macaque brain. J. Neurosci. Methods 372, 109530 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95, 531–549 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Burda, J. E. & Sofroniew, M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Castle, M. J., Turunen, H. T., Vandenberghe, L. H. & Wolfe, J. H. Controlling AAV tropism in the nervous system with natural and engineered capsids. Methods Mol. Biol. 1382, 133–149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Diaz-Castro, B., Gangwani, M. R., Yu, X., Coppola, G. & Khakh, B. S. Astrocyte molecular signatures in Huntington’s disease. Sci. Transl. Med. 11, eaaw8546 (2019).

    CAS  PubMed  Google Scholar 

  16. Yu, X. et al. Context-specific striatal astrocyte molecular responses are phenotypically exploitable. Neuron 108, 1146–1162.e1110 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99, 1170–1187 e1179 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cetin, A., Komai, S., Eliava, M., Seeburg, P. H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nat. Protoc. 1, 3166–3173 (2006).

    CAS  PubMed  Google Scholar 

  19. Lee, Y., Messing, A., Su, M. & Brenner, M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56, 481–493 (2008).

    PubMed  Google Scholar 

  20. Shigetomi, E. et al. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J. Gen. Physiol. 141, 633–647 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Koerber, J. T. et al. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol. Ther. 17, 2088–2095 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Feist, P. & Hummon, A. B. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int. J. Mol. Sci. 16, 3537–3563 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pajarillo, E., Rizor, A., Lee, J., Aschner, M. & Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161, 107559 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tong, X. et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 17, 694–703 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, X., Wan, J. Q. & Tong, X. P. Potassium channel dysfunction in neurons and astrocytes in Huntington’s disease. CNS Neurosci. Ther. 24, 311–318 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Cho, K. F. et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15, 3971–3999 (2020).

    CAS  PubMed  Google Scholar 

  27. Rayaprolu, S. et al. Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain. Nat. Commun. 13, 2927 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lackner, D. H., Schmidt, M. W., Wu, S., Wolf, D. A. & Bähler, J. Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast. Genome Biol. 13, R25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Laurent, J. M. et al. Protein abundances are more conserved than mRNA abundances across diverse taxa. Proteomics 10, 4209–4212 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    CAS  PubMed  Google Scholar 

  31. Dowell, J. A., Johnson, J. A. & Li, L. Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J. Proteome Res. 8, 4135–4143 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Frese, C. K. et al. Quantitative map of proteome dynamics during neuronal differentiation. Cell Rep. 18, 1527–1542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Basu, S., Campbell, H. M., Dittel, B. N. & Ray, A. Purification of specific cell population by fluorescence activated cell sorting (FACS). J. Vis. Exp. https://doi.org/10.3791/1546 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Foo, L. C. Purification of astrocytes from transgenic rodents by fluorescence-activated cell sorting. Cold Spring Harb. Protoc. 2013, 551–560 (2013).

    PubMed  Google Scholar 

  35. Pan, J. & Wan, J. Methodological comparison of FACS and MACS isolation of enriched microglia and astrocytes from mouse brain. J. Immunol. Methods 486, 112834 (2020).

    CAS  PubMed  Google Scholar 

  36. Lange, S. C., Bak, L. K., Waagepetersen, H. S., Schousboe, A. & Norenberg, M. D. Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem. Res. 37, 2569–2588 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, X. et al. Deep single-cell-type proteome profiling of mouse brain by nonsurgical AAV-mediated proximity labeling. Anal. Chem. 94, 5325–5334 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shuster, S. A. et al. In situ cell-type-specific cell-surface proteomic profiling in mice. Neuron 110, 3882–3896.e3889 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dumrongprechachan, V. et al. Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum. Nat. Commun. 12, 4855 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, G. et al. Mechanism of adrenergic Ca(V)1.2 stimulation revealed by proximity proteomics. Nature 577, 695–700 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360.e312 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. May, D. G., Scott, K. L., Campos, A. R. & Roux, K. J. Comparative application of BioID and TurboID for protein-proximity biotinylation. Cells https://doi.org/10.3390/cells9051070 (2020).

  45. Grant, M. K. O., Shapiro, S. L., Ashe, K. H., Liu, P. & Zahs, K. R. A cautionary tale: endogenous biotinylated proteins and exogenously-introduced protein a cause antibody-independent artefacts in western blot studies of brain-derived proteins. Biol. Proced. Online https://doi.org/10.1186/s12575-019-0095-z (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cho, K. F. et al. Split-TurboID enables contact-dependent proximity labeling in cells. Proc. Natl Acad. Sci. USA 117, 12143–12154 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    CAS  PubMed  Google Scholar 

  48. Choi, H. et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat. Methods 8, 70–73 (2011).

    CAS  PubMed  Google Scholar 

  49. Jami-Alahmadi, Y., Pandey, V., Mayank, A. K. & Wohlschlegel, J. A. A robust method for packing high resolution C18 RP-nano-HPLC columns. J. Vis. Exp. https://doi.org/10.3791/62380 (2021).

    Article  PubMed  Google Scholar 

  50. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.S.S. was supported by the National Science Foundation Graduate Research Fellowship Program (NSF-GRFP; DGE-2034835) and by the UCLA Eugene V. Cota-Robles Fellowship. B.S.K., J.S.S. and this work were supported by the National Institutes of Health (R35 NS111583, R01 AG075955, R01 DA047444), by an Allen Distinguished Investigator Award, a Paul G. Allen Frontiers Group advised grant of the Paul G. Allen Family Foundation and by the Ressler Family Foundation (to B.S.K.).

Author information

Authors and Affiliations

Authors

Contributions

J.S.S. wrote the first draft of the text and made the figures. Y.J.-A. wrote sections on proteomic data analyses. B.S.K. and J.S.S. finalized the text and figures. All authors contributed to the final version.

Corresponding authors

Correspondence to Joselyn S. Soto or Baljit S. Khakh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks William Jones and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Soto, J. S. et al. Nature 616, 764–773 (2023): https://doi.org/10.1038/s41586-023-05927-7

Extended data

Extended Data Fig. 1 In vivo protein biotinylation in mouse.

a. Photo showing site of subcutaneous biotin injection in mouse for in vivo BioID2 protein biotinylation. b. A successful injection will produce a temporary pocket of biotin under the skin of the mouse (red arrows. The pocket should disappear within 10 minutes.

Extended Data Fig. 2 Microdissection setup and tissue homogenization.

a. Photos depicting the microdissection area for removal and isolation of the CNS region of interest. Because the sample must remain cold, the dissection is conducted with a pre-frozen TissueTek cold plate. Standard microdissection tools for striatum are shown. b. Photos of striata in a dounce homogenizer tube that was prefilled with 600 µL of lysis buffer 1 (Step 126) prior to homogenization with pestles. Photo on the right shows homogenate after homogenization with pestles (Step 127).

Supplementary Information

Reporting Summary

Supplementary Code 1

Contrast file for artMS analysis input.

Supplementary Code 2

Keys file for artMS analysis input.

Supplementary Code 3

Yaml configuration file for artMS analysis input.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, J.S., Jami-Alahmadi, Y., Wohlschlegel, J.A. et al. In vivo identification of astrocyte and neuron subproteomes by proximity-dependent biotinylation. Nat Protoc 19, 896–927 (2024). https://doi.org/10.1038/s41596-023-00923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00923-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing