Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spatiotemporal control of RNA metabolism and CRISPR–Cas functions using engineered photoswitchable RNA-binding proteins

Abstract

RNA molecules perform various crucial roles in diverse cellular processes, from translating genetic information to decoding the genome, regulating gene expression and catalyzing chemical reactions. RNA-binding proteins (RBPs) play an essential role in regulating the diverse behaviors and functions of RNA in live cells, but techniques for the spatiotemporal control of RBP activities and RNA functions are rarely reported yet highly desirable. We recently reported the development of LicV, a synthetic photoswitchable RBP that can bind to a specific RNA sequence in response to blue light irradiation. LicV has been used successfully for the optogenetic control of RNA localization, splicing, translation and stability, as well as for the photoswitchable regulation of transcription and genomic locus labeling. Compared to classical genetic or pharmacologic perturbations, LicV-based light-switchable effectors have the advantages of large dynamic range between dark and light conditions and submicron and millisecond spatiotemporal resolutions. In this protocol, we provide an easy, efficient and generalizable strategy for engineering photoswitchable RBPs for the spatiotemporal control of RNA metabolism. We also provide a detailed protocol for the conversion of a CRISPR–Cas system to optogenetic control. The protocols typically take 2–3 d, including transfection and results analysis. Most of this protocol is applicable to the development of novel LicV-based photoswitchable effectors for the optogenetic control of other RNA metabolisms and CRISPR–Cas functions.

Key points

  • This protocol provides an efficient and generalizable strategy for engineering photoswitchable RNA-binding proteins (RBPs) for the spatiotemporal control of RNA activity. It uses LicV, a synthetic RBP that can bind to a specific RNA sequence in response to blue light irradiation.

  • This optogenetic method circumvents the limitations of previous strategies by enabling the activity of functional RNAs or effectors to be more precisely controlled because they can be switched on and off by using light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the procedure of engineering LicV-based photoswitchable RNA effectors for the spatiotemporal control of RNA metabolism.
Fig. 2: Overview of the procedure of engineering LA-CRISPR systems for spatiotemporal CRISPR function.
Fig. 3: Overview of the procedure for in vivo optogenetic control of transcription activation in mice and zebrafish.
Fig. 4: Optogenetic control of RNA metabolism in cells by using LicV-based light-switchable RNA effectors.
Fig. 5: Optogenetic control of transcription activation in cells by using the LA-CRISPR system.
Fig. 6: In vivo optogenetic control of transcription activation in mice and zebrafish.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research paper12. The raw datasets are too large to be publicly shared but are available for research purposes from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10, 1127–1133 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buxbaum, A. R., Haimovich, G. & Singer, R. H. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16, 95–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Pichon, X. et al. RNA binding protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci. 13, 294–304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abil, Z., Denard, C. A. & Zhao, H. Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA. J. Biol. Eng. 8, 7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tischer, D. & Weiner, O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol.y 15, 551–558 (2014).

    Article  CAS  Google Scholar 

  8. Kawano, F., Shi, F. & Yazawa, M. Optogenetics: switching with red and blue. Nat. Chem. Biol. 13, 573–574 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Weber, A. M. et al. A blue light receptor that mediates RNA binding and translational regulation. Nat. Chem. Biol.y 15, 1085–1092 (2019).

    Article  CAS  Google Scholar 

  10. Pilsl, S., Morgan, C., Choukeife, M., Moglich, A. & Mayer, G. Optoribogenetic control of regulatory RNA molecules. Nat. Commun. 11, 4825 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Renzl, C., Kakoti, A. & Mayer, G. Aptamer-mediated reversible transactivation of gene expression by light. Angew. Chem. Int. Ed. Engl. 59, 22414–22418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, R. et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat. Biotechnol. 40, 779–786 (2022).

    Article  PubMed  Google Scholar 

  13. Ranzani, A. T. et al. Light-dependent control of bacterial expression at the mRNA Level. ACS Synth. Biol. 11, 3482–3492 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Bubeck, F. et al. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nat. Methods 15, 924–927 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Liu, K. I. et al. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing. Nat. Chem. Biol. 12, 980–987 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Y. & Varani, G. Engineering RNA-binding proteins for biology. FEBS J. 280, 3734–3754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choudhury, R., Tsai, Y. S., Dominguez, D., Wang, Y. & Wang, Z. Engineering RNA endonucleases with customized sequence specificities. Nat. Commun. 3, 1147 (2012).

    Article  PubMed  ADS  Google Scholar 

  20. Cooke, A., Prigge, A., Opperman, L. & Wickens, M. Targeted translational regulation using the PUF protein family scaffold. Proc. Natl. Acad. Sci. USA 108, 15870–15875 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  22. Batra, R. et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell 170, 899–912.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Chaulk, S. G. & MacMillan, A. M. Caged RNA: photo-control of a ribozyme reaction. Nucleic Acids Res. 26, 3173–3178 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Nihongaki, Y., Otabe, T., Ueda, Y. & Sato, M. A split CRISPR-Cpf1 platform for inducible genome editing and gene activation. Nat. Chem. Biol. 15, 882–888 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Nihongaki, Y. et al. CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat. Methods 14, 963–966 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Richter, F. et al. Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res. 44, 10003–10014 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, X. X. et al. A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription. ACS Chem. Biol. 13, 443–448 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Ma, H. et al. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat. Methods 15, 928–931 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qin, P. et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat. Commun. 8, 14725 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Shao, S. et al. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res. 44, e86 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ma, H. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528–530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boersma, S. et al. Multi-color single-molecule imaging uncovers extensive heterogeneity in mRNA decoding. Cell 178, 458–472.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nowak, C. M., Lawson, S., Zerez, M. & Bleris, L. Guide RNA engineering for versatile Cas9 functionality. Nucleic Acids Res. 44, 9555–9564 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Terenin, I. M., Smirnova, V. V., Andreev, D. E., Dmitriev, S. E. & Shatsky, I. N. A researcher’s guide to the galaxy of IRESs. Cell. Mol. Life Sci. 74, 1431–1455 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, W. et al. Impact of different promoters, promoter mutation, and an enhancer on recombinant protein expression in CHO cells. Sci. Rep. 7, 10416 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  41. Kulaberoglu, Y. et al. RNA polymerase III, ageing and longevity. Front. Genet. 12, 705122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roelz, R., Pilz, I. H., Mutschler, M. & Pahl, H. L. Of mice and men: human RNA polymerase III promoter U6 is more efficient than its murine homologue for shRNA expression from a lentiviral vector in both human and murine progenitor cells. Exp. Hematol. 38, 792–797 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Buckle, A. M., Schreiber, G. & Fersht, A. R. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution. Biochemistry 33, 8878–8889 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Li, T. et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat. Commun. 12, 615 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Chen, X., Zaro, J. L. & Shen, W. C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Schwartz, M. A., Schaller, M. D. & Ginsberg, M. H. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 11, 549–599 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Zou, Y. et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat. Protoc. 13, 2362–2386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat. Biotechnol. 37, 1287–1293 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, X., Wang, X., Du, Z., Ma, Z. & Yang, Y. Spatiotemporal control of gene expression in mammalian cells and in mice using the LightOn system. Curr. Protoc. Chem. Biol. 5, 111–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Luft, C. et al. Application of Gaussia luciferase in bicistronic and non-conventional secretion reporter constructs. BMC Biochem. 15, 14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R. & Breakefield, X. O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol. Ther. 11, 435–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abil, Z. & Zhao, H. Engineering reprogrammable RNA-binding proteins for study and manipulation of the transcriptome. Mol. Biosyst. 11, 2658–2665 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, L., Chen, C., Fan, X. & Tang, X. Photomodulating gene expression by using caged siRNAs with single-aptamer modification. Chembiochem 19, 1259–1263 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, L. et al. Caged circular siRNAs for photomodulation of gene expression in cells and mice. Chem. Sci. 9, 44–51 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Wu, L. et al. Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells. Nucleic Acids Res. 41, 677–686 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Ando, H., Furuta, T., Tsien, R. Y. & Okamoto, H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat. Genet. 28, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Ando, H., Furuta, T. & Okamoto, H. Photo-mediated gene activation by using caged mRNA in zebrafish embryos. Methods Cell Biol. 77, 159–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, P. et al. Mapping spatial transcriptome with light-activated proximity-dependent RNA labeling. Nat. Chem. Biol. 15, 1110–1119 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Benhalevy, D., Anastasakis, D. G. & Hafner, M. Proximity-CLIP provides a snapshot of protein-occupied RNA elements in subcellular compartments. Nat. Methods 15, 1074–1082 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nihongaki, Y., Yamamoto, S., Kawano, F., Suzuki, H. & Sato, M. CRISPR-Cas9-based photoactivatable transcription system. Chem. Biol. 22, 169–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Polstein, L. R. & Gersbach, C. A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198–200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ho, S. C., Mariati, Yeo, J. H., Fang, S. G. & Yang, Y. Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells. Mol. Biotechnol. 57, 138–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Schwerdtfeger, C. & Linden, H. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22, 4846–4855 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zoltowski, B. D. & Crane, B. R. Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Biochemistry 47, 7012–7019 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2022YFC3400100 to Y.Y and X.C. and 2019YFA0904800 to Y.Y.), NSFC (32121005, 32150028, 21937004 and 91857202 to Y.Y, 31600688 to X.C. and 32001026 to R.L.), the Shanghai Municipal Education Commission (2021 Sci & Tech 03-28 to Y.Y. and X.C.), the ALS Project from Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital (to Y.Y.), the Shanghai Rising-Star Program (to X.C.), the State Key Laboratory of Bioreactor Engineering (to Y.Y. and X.C.) and the Fundamental Research Funds for the Central Universities (to Y.Y. and X.C.).

Author information

Authors and Affiliations

Authors

Contributions

Concepts were conceived by Y.Y. and X.C. Y.Y., X.C., R.L., S.Z. and J. Yang. designed the experiments and analyzed the data. R.L., J. Yao, J. Yang and S.Z. performed plasmid construction and live-cell experiments. Y. Zhang performed mice experiments. S.Z. performed zebrafish experiments. J. Yang performed LicV protein purification and in vitro characterization. X.Y., L.L., Y. B. Zhang and Y. Zhuang gave technical support and conceptual advice. Y.Y., X.C. and R.L. wrote the manuscript.

Corresponding authors

Correspondence to Yi Yang or Xianjun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Liu, R. et al. Nat. Biotechnol. 40, 779–786 (2022): https://doi.org/10.1038/s41587-021-01112-1

Li, T. et al. Nat. Commun. 12, 615 (2021): https://doi.org/10.1038/s41467-021-20913-1

Wang, X. et al. Nat. Methods 9, 266–269 (2012): https://doi.org/10.1038/nmeth.1892

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Note

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Figs. 5 and 7

Source data

Source Data Figs. 4 5 and 6

Statistical source data for Fig. 4, c and f; Fig. 5b; and Fig. 6, b and d

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Yao, J., Zhou, S. et al. Spatiotemporal control of RNA metabolism and CRISPR–Cas functions using engineered photoswitchable RNA-binding proteins. Nat Protoc 19, 374–405 (2024). https://doi.org/10.1038/s41596-023-00920-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00920-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology