Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Co-fractionation–mass spectrometry to characterize native mitochondrial protein assemblies in mammalian neurons and brain

Abstract

Human mitochondrial (mt) protein assemblies are vital for neuronal and brain function, and their alteration contributes to many human disorders, e.g., neurodegenerative diseases resulting from abnormal protein–protein interactions (PPIs). Knowledge of the composition of mt protein complexes is, however, still limited. Affinity purification mass spectrometry (MS) and proximity-dependent biotinylation MS have defined protein partners of some mt proteins, but are too technically challenging and laborious to be practical for analyzing large numbers of samples at the proteome level, e.g., for the study of neuronal or brain-specific mt assemblies, as well as altered mtPPIs on a proteome-wide scale for a disease of interest in brain regions, disease tissues or neurons derived from patients. To address this challenge, we adapted a co-fractionation–MS platform to survey native mt assemblies in adult mouse brain and in human NTERA-2 embryonal carcinoma stem cells or differentiated neuronal-like cells. The workflow consists of orthogonal separations of mt extracts isolated from chemically cross-linked samples to stabilize PPIs, data-dependent acquisition MS to identify co-eluted mt protein profiles from collected fractions and a computational scoring pipeline to predict mtPPIs, followed by network partitioning to define complexes linked to mt functions as well as those essential for neuronal and brain physiological homeostasis. We developed an R/CRAN software package, Macromolecular Assemblies from Co-elution Profiles for automated scoring of co-fractionation–MS data to define complexes from mtPPI networks. Presently, the co-fractionation–MS procedure takes 1.5–3.5 d of proteomic sample preparation, 31 d of MS data acquisition and 8.5 d of data analyses to produce meaningful biological insights.

Key points

  • Mitochondrial function is achieved by protein assemblies. Studying the composition and protein–protein interactions (PPIs) of these complexes is essential for identifying and understanding human disorders resulting from abnormal PPIs. This is especially relevant for neuronal cells.

  • Mitochondria are isolated and undergo chemical cross-linking to preserve the PPIs. Mitochondrial extracts are fractionated using orthogonal chromatographic methods. After proteomic mass spectrometry, an R/CRAN software package (Macromolecular Assemblies from Co-elution Profiles) is used to define mitochondrial complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrative CF–MS workflow to generate mt multiprotein complexes.
Fig. 2: Evaluation on mt and iPSC quality.
Fig. 3: SEC and IEX fractionations, along with LC and MS acquisition parameters.
Fig. 4: SEC– and IEX–HPLC fractionations and MS data acquisition.
Fig. 5: Assessment on the quality of co-eluted mt proteins detected from CF–MS experiments.
Fig. 6: Generation and validation of high-confidence mt physical interactions.
Fig. 7: Correlation analysis of the putatively interacting mouse mt proteins in brain.
Fig. 8: Quality metrics of the predicted mt protein complexes in mouse brain.

Similar content being viewed by others

Data availability

The R-package MACP is released as an open-source code under the MIT license that is available on GitHub at https://github.com/BabuLab-UofR/MACP, as well as on CRAN at https://cran.r-project.org/package=MACP. A detailed documentation on the use of MACP package in R that is provided through vignette, along with the demo data, can be downloaded from https://github.com/BabuLab-UofR/MACP/blob/main/vignettes/MACP_tutorial.Rmd. The raw co-fractionation data from this work is available at ProteomeXchange with the identifier PXD039444, in accordance with the data sharing policy. Source data are provided with this paper.

Code availability

The MACP software source code is provided on GitHub at https://github.com/BabuLab-UofR/ MACP. To guide users with MACP functionalities, illustrative datasets and output for testing, as well as documentation and tutorial vignette of MACP describing a detailed protocol on how to perform CF–MS analysis is provided on GitHub and CRAN at https://cran.r-project.org/package=MACP.

References

  1. Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science. 375, eabi6983 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu, L. Z. et al. EPIC: software toolkit for elution profile-based inference of protein complexes. Nat. Methods 16, 737–742 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gupta, R., Karczewski, K. J., Howrigan, D., Neale, B. M. & Mootha, V. K. Human genetic analyses of organelles highlight the nucleus in age-related trait heritability. eLife 10, e68610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uher, R. The role of genetic variation in the causation of mental illness: an evolution-informed framework. Mol. Psychiatry 14, 1072–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Pang, S. Y. et al. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Transl. Neurodegener. 8, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kuzmanov, U. & Emili, A. Protein–protein interaction networks: probing disease mechanisms using model systems. Genome Med. 5, 37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Walhout, A. J. & Vidal, M. Protein interaction maps for model organisms. Nat. Rev. Mol. Cell Biol. 2, 55–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Malty, R. H. et al. A map of human mitochondrial protein interactions linked to neurodegeneration reveals new mechanisms of redox homeostasis and NF-kappaB signaling. Cell Syst. 5, 1–14 (2017).

    Google Scholar 

  10. Pourhaghighi, R. et al. BraInMap elucidates the macromolecular connectivity landscape of mammalian brain. Cell Syst. 10, 333–350.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Babu, M. et al. Global landscape of cell envelope protein complexes in Escherichia coli. Nat. Biotechnol. 36, 103–112 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Babu, M. et al. Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489, 585–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Malovannaya, A. et al. Analysis of the human endogenous coregulator complexome. Cell 145, 787–799 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 545, 505–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huttlin, E. L. et al. The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425–440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184, 3022–3040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guruharsha, K. G. et al. A protein complex network of Drosophila melanogaster. Cell 147, 690–703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho, K. F. et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15, 3971–3999 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bludau, I. et al. Complex-centric proteome profiling by SEC-SWATH-MS for the parallel detection of hundreds of protein complexes. Nat. Protoc. 15, 2341–2386 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, X. et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat. Commun. 9, 1188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell 55, 332–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Go, C. D. et al. A proximity-dependent biotinylation map of a human cell. Nature 595, 120–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Samavarchi-Tehrani, P., Samson, R. & Gingras, A. C. Proximity dependent biotinylation: key enzymes and adaptation to proteomics approaches. Mol. Cell Proteomics 19, 757–773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wan, C. et al. Panorama of ancient metazoan macromolecular complexes. Nature 525, 339–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skinnider, M. A. et al. An atlas of protein–protein interactions across mouse tissues. Cell 184, 4073–4089.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Skinnider, M. A. & Foster, L. J. Meta-analysis defines principles for the design and analysis of co-fractionation mass spectrometry experiments. Nat. Methods 18, 806–815 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Magistretti, P. J. & Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Picard, M. & McEwen, B. S. Mitochondria impact brain function and cognition. Proc. Natl Acad. Sci. USA 111, 7–8 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Aly, K. A., Moutaoufik, M. T., Phanse, S., Zhang, Q. & Babu, M. From fuzziness to precision medicine: on the rapidly evolving proteomics with implications in mitochondrial connectivity to rare human disease. iScience 24, 102030 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Norat, P. et al. Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. NPJ Regen. Med. 5, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zilocchi, M., Broderick, K., Phanse, S., Aly, K. A. & Babu, M. Mitochondria under the spotlight: on the implications of mitochondrial dysfunction and its connectivity to neuropsychiatric disorders. Comput. Struct. Biotechnol. J 18, 2535–2546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DiMauro, S. & Schon, E. A. Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 31, 91–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Floyd, B. J. et al. Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol. Cell 63, 621–632 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moutaoufik, M. T. et al. Rewiring of the human mitochondrial interactome during neuronal reprogramming reveals regulators of the respirasome and neurogenesis. iScience 19, 1114–1132 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Antonicka, H. et al. A high-density human mitochondrial proximity interaction network. Cell Metab. 32, 479–497.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Salas, D., Stacey, R. G., Akinlaja, M. & Foster, L. J. Next-generation interactomics: considerations for the use of co-elution to measure protein interaction networks. Mol. Cell. Proteomics 19, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Scott, N. E. et al. Interactome disassembly during apoptosis occurs independent of caspase cleavage. Mol. Syst. Biol. 13, 906 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gonzalez-Franquesa, A. et al. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity. Cell Rep. 35, 109180 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Hevler, J. F. et al. Selective cross-linking of coinciding protein assemblies by in-gel cross-linking mass spectrometry. EMBO J. 40, e106174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heusel, M. et al. Complex-centric proteome profiling by SEC-SWATH-MS. Mol. Syst. Biol. 15, e8438 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kristensen, A. R., Gsponer, J. & Foster, L. J. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods 9, 907–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. O’Meara, T. R. et al. Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. PLoS Biol. 17, e3000358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stacey, R. G., Skinnider, M. A., Scott, N. E. & Foster, L. J. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE). BMC Bioinformatics 18, 457 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cogliati, S., Herranz, F., Ruiz-Cabello, J. & Enriquez, J. A. Digitonin concentration is determinant for mitochondrial supercomplexes analysis by BlueNative page. Biochim. Biophys. Acta Bioenerg. 1862, 148332 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Ford, H. C. et al. Towards a molecular mechanism underlying mitochondrial protein import through the TOM and TIM23 complexes. eLife 11, e75426 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, Y. C. et al. Impact of detergents on membrane protein complex isolation. J. Proteome Res. 17, 348–358 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Liao, P. C., Bergamini, C., Fato, R., Pon, L. A. & Pallotti, F. Isolation of mitochondria from cells and tissues. Methods Cell. Biol. 155, 3–31 (2020).

    Article  PubMed  Google Scholar 

  53. Lanza, I. R. & Nair, K. S. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 457, 349–372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wettmarshausen, J. & Perocchi, F. Isolation of functional mitochondria from cultured cells and mouse tissues. Methods Mol. Biol. 1567, 15–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Kunji, E. R., Harding, M., Butler, P. J. & Akamine, P. Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography. Methods 46, 62–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Havugimana, P. C., Wong, P. & Emili, A. Improved proteomic discovery by sample pre-fractionation using dual-column ion-exchange high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 847, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Li, J. et al. TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. J. Proteome Res. 20, 2964–2972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McWhite, C. D. et al. A pan-plant protein complex map reveals deep conservation and novel assemblies. Cell 181, 460–474.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kislinger, T. et al. PRISM, a generic large scale proteomic investigation strategy for mammals. Mol. Cell. Proteomics 2, 96–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Kwon, T., Choi, H., Vogel, C., Nesvizhskii, A. I. & Marcotte, E. M. Msblender: a probabilistic approach for integrating peptide identifications from multiple database search engines. J. Proteome Res. 10, 2949–2958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Choi, H., Glatter, T., Gstaiger, M. & Nesvizhskii, A. I. SAINT-MS1: protein–protein interaction scoring using label-free intensity data in affinity purification–mass spectrometry experiments. J. Proteome Res. 11, 2619–2624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gingras, A. C., Gstaiger, M., Raught, B. & Aebersold, R. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell. Biol. 8, 645–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Giurgiu, M. et al. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 47, D559–D563 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, T. & Wong, G. Gene expression data analysis using Hellinger correlation in weighted gene co-expression networks (WGCNA). Comput. Struct. Biotechnol. J 20, 3851–3863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song, L., Langfelder, P. & Horvath, S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 13, 328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pang, C. N. I. et al. Analytical guidelines for co-fractionation mass spectrometry obtained through global profiling of gold standard saccharomyces cerevisiae protein complexes. Mol. Cell. Proteomics 19, 1876–1895 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Correia, F. B., Coelho, E. D., Oliveira, J. L. & Arrais, J. P. Handling noise in protein interaction networks. BioMed Res. Int. 2019, 8984248 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Orre, L. M. et al. SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization. Mol. Cell 73, 166–182.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Nepusz, T., Yu, H. & Paccanaro, A. Detecting overlapping protein complexes in protein–protein interaction networks. Nat. Methods 9, 471–472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leitner, A. et al. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol. Cell. Proteomics 9, 1634–1649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McWhite, C. D. et al. Co-fractionation/mass spectrometry to identify protein complexes. STAR Protoc. 2, 100370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hutchinson-Bunch, C. et al. Assessment of TMT labeling efficiency in large-scale quantitative proteomics: the critical effect of sample pH. ACS Omega 6, 12660–12666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Skinnider, M. A., Stacey, R. G. & Foster, L. J. Genomic data integration systematically biases interactome mapping. PLoS Comput. Biol. 14, e1006474 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li, Z. & Graham, B. H. Measurement of mitochondrial oxygen consumption using a Clark electrode. Methods Mol. Biol. 837, 63–72 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, T. et al. A scored human protein–protein interaction network to catalyze genomic interpretation. Nat. Methods 14, 61–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Pan, J. et al. Interrogation of mammalian protein complex structure, function, and membership using genome-scale fitness screens. Cell Syst. 6, 555–568.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Le Vasseur, M. et al. Genome-wide CRISPRi screening identifies OCIAD1 as a prohibitin client and regulatory determinant of mitochondrial complex III assembly in human cells. eLife 10, e67624 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shetty, D. K., Kalamkar, K. P. & Inamdar, M. S. OCIAD1 controls electron transport chain complex I activity to regulate energy metabolism in human pluripotent stem cells. Stem Cell Rep. 11, 128–141 (2018).

    Article  CAS  Google Scholar 

  81. Guarani, V. et al. TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial complex I assembly factor through association with the MCIA complex. Mol. Cell Biol. 34, 847–861 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nazli, A. et al. A mutation in the TMEM65 gene results in mitochondrial myopathy with severe neurological manifestations. Eur. J. Hum. Genet. 25, 744–751 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.T.M., M.J. and A.G. are supported by the Canadian Institutes of Health Research, Parkinson Society of Canada and/or the Saskatchewan Health Research Foundation postdoctoral fellowships. M.B. is a Chancellors Research Chair in Network Biology. This work was supported by the grants from the Canadian Institutes of Health Research (FDN-154318; PJT-186258), ALS Society of Canada, ARSACS foundation and National Institutes of Health (R01GM106019) to M.B.

Author information

Authors and Affiliations

Authors

Contributions

M.B. designed, conceived and supervised the study. M.Z., M.T.M. and K.B. established the iPSC procedure, as well as performed immunoblotting, immunocytochemistry, flow cytometry and mitochondrial assays. M.T.M., M.Z., A.G., M.J. and K.B. developed and optimized mt isolation and HPLC-based separations for the CF–MS procedure. H.A. performed mass spectrometry and S.P performed mass spectra searches. M.R. performed data analyses and developed MACP software, with input from M.B. M.Z., M.T.M., M.R., K.A.A. and M.B. wrote the manuscript with feedback from others. All authors read and approved the manuscript.

Corresponding author

Correspondence to Mohan Babu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Moutaoufik, M. T. et al. iScience 19, 1114–1132 (2019): https://doi.org/10.1016/j.isci.2019.08.057

Pourhaghighi, R. et al. Cell Syst. 10, 333–350.e14 (2020): https://doi.org/10.1016/j.cels.2020.03.003

Supplementary information

Reporting Summary

Supplementary Data 1

High-quality mt protein interactions predicted in mouse brain.

Supplementary Data 2

Mt protein complexes derived from protein interactions in mouse brain.

Supplementary Data 3

Mt subunits of putative protein complexes enriched for GO annotations, human disorders and phenotypic aberrations in human disease.

Source data

Source Data Fig. 1,2,3,4,5,6,7,8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilocchi, M., Rahmatbakhsh, M., Moutaoufik, M.T. et al. Co-fractionation–mass spectrometry to characterize native mitochondrial protein assemblies in mammalian neurons and brain. Nat Protoc 18, 3918–3973 (2023). https://doi.org/10.1038/s41596-023-00901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00901-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing