Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Combining surface-accessible Ag and Au colloidal nanomaterials with SERS for in situ analysis of molecule–metal interactions in complex solution environments

Abstract

The interactions between molecules and noble metal nanosurfaces play a central role in many areas of nanotechnology. The surface chemistry of noble metal surfaces under ideal, clean conditions has been extensively studied; however, clean conditions are seldom met in real-world applications. We developed a sensitive and robust characterization technique for probing the surface chemistry of nanomaterials in the complex environments that are directly relevant to their applications. Surface-enhanced Raman spectroscopy (SERS) can be used to probe the interaction of plasmonic nanoparticles with light to enhance the Raman signals of molecules near the surface of nanoparticles. Here, we explain how to couple SERS with surface-accessible plasmonic-enhancing substrates, which are capped with weakly adsorbing capping ligands such as citrate and chloride ions, to allow molecule–metal interactions to be probed in situ and in real time, thus providing information on the surface orientation and the formation and breaking of chemical bonds. The procedure covers the synthesis and characterization of surface-accessible colloids, the preliminary SERS screening with agglomerated colloids, the synthesis and characterization of interfacial nanoparticle assemblies, termed metal liquid-like films, and the in situ biphasic SERS analysis with metal liquid-like films. The applications of the approach are illustrated using two examples: the probing of π–metal interactions and that of target/ligand–particle interactions on hollow bimetallic nanostars. This protocol, from the initial synthesis of the surface-accessible plasmonic nanoparticles to the final in situ biphasic SERS analysis, requires ~14 h and is ideally suited to users with basic knowledge in performing Raman spectroscopy and wet synthesis of metal nanoparticles.

Key points

  • This protocol covers the synthesis of three types of modifier-free and surface-accessible nanoparticle colloids and of interfacial nanoparticle assemblies (termed metal liquid-like films) as well as their characterization using surface-enhanced Raman spectroscopy.

  • The plasmonic nanomaterials enable the characterization of molecule–metal interactions in complex environments, avoiding the typical passivation of nanomaterials when using surface-adsorbed molecular modifiers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of SERS with other techniques for surface chemistry analysis.
Fig. 2: Overview of the technique for applying SERS in surface chemistry analysis.
Fig. 3: Representative characterization results of CRSC, CRGC and BRSC.
Fig. 4: Photographs of MeLLFs shaken to different extents.
Fig. 5: A representative sample of a nanoparticle–polymer film formed from a CRGC MeLLF.
Fig. 6: SERS setup for analyzing MeLLFs.
Fig. 7: The effect of container hydrophobicity on the appearance of MeLLFs.
Fig. 8: SERS studies of π–metal interactions between naphthalene and Ag, Au MeLLFs.
Fig. 9: SERS analysis of Ag–Au hollow bimetallic nanostars.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers17,20,22. The raw datasets are too large to be publicly shared but are available for research purposes from the corresponding authors upon reasonable request.

References

  1. Zeng, X., Zhao, Y., Hu, X., Stucky, G. D. & Moskovits, M. Rational component and structure design of noble-metal composites for optical and catalytic applications. Small Struct. 2, 2000138 (2021).

    CAS  Google Scholar 

  2. Liang, D., Wang, X. & Fan, W. Potential application of Au core labeling for tracking Ag nanoparticles in the aquatic and biological system. Water Res. 215, 118280 (2022).

    CAS  PubMed  Google Scholar 

  3. Wang, L., Hasanzadeh Kafshgari, M. & Meunier, M. Optical properties and applications of plasmonic‐metal nanoparticles. Adv. Funct. Mater. 30, 2005400 (2020).

    CAS  Google Scholar 

  4. Avouris, P. & Demuth, J. E. Electronic excitations of benzene, pyridine, and pyrazine adsorbed on Ag(111). J. Chem. Phys. 75, 4783–4794 (1981).

    CAS  Google Scholar 

  5. Klein, B. P. et al. Enhanced bonding of pentagon–heptagon defects in graphene to metal surfaces: insights from the adsorption of azulene and naphthalene to Pt(111). Chem. Mater. 32, 1041–1053 (2020).

    CAS  Google Scholar 

  6. Wang, X., Huang, S.-C., Hu, S., Yan, S. & Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2, 253–271 (2020).

    Google Scholar 

  7. Zhang, K. et al. Synthesis of a gold-metal oxide core-satellite nanostructure for in-situ SERS study of CuO-catalyzed photooxidation. Angew. Chem. Int. Ed. 59, 18003–18009 (2020).

    CAS  Google Scholar 

  8. Chen, J. et al. Bifunctional porous SnO2/Ag nanofibers for efficient electroreduction of carbon dioxide to formate and its mechanism elucidation by in-situ surface-enhanced Raman scattering. Appl. Catal. B 325, 122350 (2023).

  9. Niu, R. et al. Pattern recognition directed assembly of plasmonic gap nanostructures for single-molecule SERS. ACS Nano 16, 14622–14631 (2022).

    CAS  PubMed  Google Scholar 

  10. Zhou, Y., Liu, J., Zheng, T. & Tian, Y. Label-free SERS strategy for in-situ monitoring and real-time imaging of abeta aggregation process in live neurons and brain tissues. Anal. Chem. 92, 5910–5920 (2020).

    CAS  PubMed  Google Scholar 

  11. Akbali, B. et al. Determining the molecular orientation on the metal nanoparticle surface through surface-enhanced raman spectroscopy and density functional theory simulations. J. Phys. Chem. C. 125, 16289–16295 (2021).

    CAS  Google Scholar 

  12. Zhu, Y., Tang, H., Wang, H. & Li, Y. In-situ SERS monitoring of the plasmon-driven catalytic reaction by using single Ag@Au nanowires as substrates. Anal. Chem. 93, 11736–11744 (2021).

    CAS  PubMed  Google Scholar 

  13. Zhang, D., Pu, H., Huang, L. & Sun, D.-W. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: fundamentals and recent applications. Trends Food Sci. Technol. 109, 690–701 (2021).

    CAS  Google Scholar 

  14. Montes-Garcia, V. et al. Chemical sensing with Au and Ag nanoparticles. Chem. Soc. Rev. 50, 1269–1304 (2021).

    CAS  PubMed  Google Scholar 

  15. Jana, D., Matti, C., He, J. & Sagle, L. Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing. Anal. Chem. 87, 3964–3972 (2015).

    CAS  PubMed  Google Scholar 

  16. Yang, N. et al. Influence of stabilizers on the performance of Au/TiO2 catalysts for CO oxidation. ACS Catal. 11, 11607–11615 (2021).

    CAS  Google Scholar 

  17. Li, C. et al. Uncovering strong π–metal interactions on Ag and Au nanosurfaces under ambient conditions via in-situ surface-enhanced Raman spectroscopy. Chem 8, 2514–2528 (2022).

    CAS  Google Scholar 

  18. Cai, Y. Y., Choi, Y. C. & Kagan, C. R. Chemical and physical properties of photonic noble-metal nanomaterials. Adv. Mater. e2108104 (2021).

  19. Bell, S. E. J. & McCourt, M. R. SERS enhancement by aggregated Au colloids: effect of particle size. Phys. Chem. Chem. Phys. 11, 7455–7462 (2009).

    CAS  PubMed  Google Scholar 

  20. Ye, Z. et al. Surfactant-free synthesis of spiky hollow Ag–Au nanostars with chemically exposed surfaces for enhanced catalysis and single-particle SERS. JACS Au 2, 178–187 (2022).

    CAS  PubMed  Google Scholar 

  21. Konrad, M. P., Doherty, A. P. & Bell, S. E. J. Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal. Chem. 85, 6783–6789 (2013).

    CAS  PubMed  Google Scholar 

  22. Xu, Y., Konrad, M. P., Lee, W. W., Ye, Z. & Bell, S. E. J. A method for promoting assembly of metallic and nonmetallic nanoparticles into interfacial monolayer films. Nano Lett. 16, 5255–5260 (2016).

    CAS  PubMed  Google Scholar 

  23. Ye, Z., Li, C., Chen, Q., Xu, Y. & Bell, S. E. J. Ultra-stable plasmonic colloidal aggregates for accurate and reproducible quantitative SE(R)RS in protein-rich biomedia. Angew. Chem. Int. Ed. 58, 19054–19059 (2019).

    CAS  Google Scholar 

  24. Zhang, Y. et al. General approach to surface-accessible plasmonic Pickering emulsions for SERS sensing and interfacial catalysis. Nat. Commun. 14, 1392 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, W. W., Silverson, V. A., McCoy, C. P., Donnelly, R. F. & Bell, S. E. J. Preaggregated Ag nanoparticles in dry swellable gel films for off-the-shelf surface-enhanced Raman spectroscopy. Anal. Chem. 86, 8106–8113 (2014).

    CAS  PubMed  Google Scholar 

  26. Bell, S. E. J. & Spence, S. J. Disposable, stable media for reproducible surface-enhanced Raman spectroscopy. Analyst 126, 1–3 (2001).

    CAS  PubMed  Google Scholar 

  27. Xu, Y., Konrad, M. P., Trotter, J. L., McCoy, C. P. & Bell, S. E. J. Rapid one-pot preparation of large freestanding nanoparticle-polymer films. Small 13, 1602163 (2017).

    Google Scholar 

  28. Canrinus, T. R., Lee, W. W. Y., Feringa, B. L., Bell, S. E. J. & Browne, W. R. Supramolecular low-molecular-weight hydrogelator stabilization of SERS-active aggregated nanoparticles for solution and gas sensing. Langmuir 33, 8805–8812 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Siebe, H. S. et al. Filter paper based SERS substrate for the direct detection of analytes in complex matrices. Analyst 146, 1281–1288 (2021).

    CAS  PubMed  Google Scholar 

  30. Cheung, M., Lee, W. W., Cowcher, D. P., Goodacre, R. & Bell, S. E. J. SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose. Chem. Commun. 52, 9925–9928 (2016).

    CAS  Google Scholar 

  31. Li, C. et al. Superhydrophobic needles tipped with 2‐dimensional arrays of plasmonic colloidal nanoparticles for microdroplet SERS analysis. J. Raman Spectrosc. 52, 386–393 (2020).

    Google Scholar 

  32. Stewart, A., Zheng, S., McCourt, M. R. & Bell, S. E. J. Controlling assembly of mixed thiol monolayers on silver nanoparticles to tune their surface properties. ACS Nano 6, 3718–3726 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bell, S. E. J. & Sirimuthu, N. M. S. Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids. J. Phys. Chem. A 109, 7405–7410 (2005).

    CAS  PubMed  Google Scholar 

  34. Ye, Z., Li, C., Xu, Y. & Bell, S. E. J. Exploiting the chemical differences between Ag and Au colloids allows dramatically improved SERS detection of ‘non-adsorbing’ molecules. Analyst 144, 448–453 (2019).

    CAS  PubMed  Google Scholar 

  35. Bell, S. E. J. & Sirimuthu, N. M. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 128, 15580–15581 (2006).

    CAS  PubMed  Google Scholar 

  36. Papadopoulou, E. & Bell, S. E. J. Surface enhanced Raman evidence for Ag+ complexes of adenine, deoxyadenosine and 5′-dAMP formed in silver colloids. Analyst 135, 3034–3037 (2010).

    CAS  PubMed  Google Scholar 

  37. Papadopoulou, E. & Bell, S. E. J. Structure of adenine on metal nanoparticles: pH equilibria and formation of Ag+ complexes detected by surface-enhanced Raman spectroscopy. J. Phys. Chem. C. 114, 22644–22651 (2010).

    CAS  Google Scholar 

  38. Papadopoulou, E. & Bell, S. E. J. DNA reorientation on Au nanoparticles: label-free detection of hybridization by surface enhanced Raman spectroscopy. Chem. Commun. 47, 10966–10968 (2011).

    CAS  Google Scholar 

  39. Papadopoulou, E. & Bell, S. E. J. Surface-enhanced Raman evidence of protonation, reorientation, and Ag+ complexation of deoxyadenosine and deoxyadenosine-5′-monophosphate (dAMP) on Ag and Au surfaces. J. Phys. Chem. C 115, 14228–14235 (2011).

  40. Li, C. et al. Unexpected dual action of cetyltrimethylammonium bromide (CTAB) in the self-assembly of colloidal nanoparticles at liquid–liquid interfaces. Adv. Mater. Interfaces 7, 2000391 (2020).

    CAS  Google Scholar 

  41. Lee, W. W. et al. Surface-enhanced Raman spectroscopy of novel psychoactive substances using polymer-stabilized Ag nanoparticle aggregates. Chem. Commun. 52, 493–496 (2016).

    CAS  Google Scholar 

  42. Bell, S. E. J. & Sirimuthu, N. M. Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls). Analyst 129, 1032–1036 (2004).

    CAS  PubMed  Google Scholar 

  43. Ho, Y. C., Lee, W. W. & Bell, S. E. J. Investigation of the chemical origin and evidential value of differences in the SERS spectra of blue gel inks. Analyst 141, 5152–5158 (2016).

    CAS  PubMed  Google Scholar 

  44. Dick, S. & Bell, S. E. J. Quantitative surface-enhanced Raman spectroscopy of single bases in oligodeoxynucleotides. Faraday Discuss. 205, 517–536 (2017).

    CAS  PubMed  Google Scholar 

  45. Stewart, A. & Bell, S. E. J. Modification of Ag nanoparticles with mixed thiols for improved SERS detection of poorly adsorbing target molecules: detection of MDMA. Chem. Commun. 47, 4523–4525 (2011).

    CAS  Google Scholar 

  46. Xu, Y. et al. Pressing solids directly into sheets of plasmonic nanojunctions enables solvent-free surface-enhanced Raman spectroscopy. Appl. Mater. Today 13, 352–358 (2018).

    Google Scholar 

  47. Papadopoulou, E. & Bell, S. E. J. Label-free detection of nanomolar unmodified single- and double-stranded DNA by using surface-enhanced Raman spectroscopy on Ag and Au colloids. Chem. Eur. J. 18, 5394–5400 (2012).

    CAS  PubMed  Google Scholar 

  48. Papadopoulou, E. & Bell, S. E. J. Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 50, 9058–9061 (2011).

    CAS  Google Scholar 

  49. Dick, S., Bell, S. E. J., Alexander, K. J., O’Neil, I. A. & Cosstick, R. SERS and SERRS detection of the DNA lesion 8-nitroguanine: a self-labeling modification. Chem. Eur. J. 23, 10663–10669 (2017).

    CAS  PubMed  Google Scholar 

  50. Kelly, J., Patrick, R., Patrick, S. & Bell, S. E. J. Surface-enhanced Raman spectroscopy for the detection of a metabolic product in the headspace above live bacterial cultures. Angew. Chem. Int. Ed. 57, 15686–15690 (2018).

    CAS  Google Scholar 

  51. Ye, Z. et al. A one-pot method for building colloidal nanoparticles into bulk dry powders with nanoscale magnetic, plasmonic and catalytic functionalities. Appl. Mater. Today 15, 398–404 (2019).

    Google Scholar 

  52. Li, X. et al. A simple and ligand‐free synthesis of light and durable metal‐TiO2 polymer films with enhanced photocatalytic properties. Adv. Mater. Interfaces 8, 2101241 (2021).

    CAS  Google Scholar 

  53. Wang, D. et al. In-situ monitoring of palladium-catalyzed chemical reactions by nanogap-enhanced Raman scattering using Single Pd cube dimers. J. Am. Chem. Soc. 144, 5003–5009 (2022).

    CAS  PubMed  Google Scholar 

  54. Li, C. et al. Local hot charge density regulation: vibration-free pyroelectric nanogenerator for effectively enhancing catalysis and in-situ surface enhanced Raman scattering monitoring. Nano Energy 81, 105585 (2021).

    CAS  Google Scholar 

  55. Zhao, Y. et al. Elucidating electrochemical CO2 reduction reaction processes on Cu(hkl) single-crystal surfaces by in-situ Raman spectroscopy. Energy Environ. Sci. 15, 3968–3977 (2022).

    CAS  Google Scholar 

  56. An, H. et al. Sub-second time-resolved surface-enhanced raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60, 16576–16584 (2021).

    CAS  Google Scholar 

  57. Tan, L. L., Wei, M., Shang, L. & Yang, Y. W. Cucurbiturils‐mediated noble metal nanoparticles for applications in sensing, SERS, theranostics, and catalysis. Adv. Funct. Mater. 31, 2007277 (2020).

    Google Scholar 

  58. Chio, W.-I. K., Xie, H., Zhang, Y., Lan, Y. & Lee, T.-C. SERS biosensors based on cucurbituril-mediated nanoaggregates for wastewater-based epidemiology. Trends Anal. Chem. 146, 116485 (2022).

    CAS  Google Scholar 

  59. Kim, J. H. et al. Understanding the impact of sulfur poisoning on the methane-reforming activity of a solid oxide fuel cell anode. ACS Catal. 11, 13556–13566 (2021).

    CAS  Google Scholar 

  60. Wang, Y. H. et al. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem. Int. Ed. 60, 5708–5711 (2021).

    CAS  Google Scholar 

  61. Mozhzhukhina, N. et al. Direct operando observation of double layer charging and early solid electrolyte interphase formation in Li-ion battery electrolytes. J. Phys. Chem. Lett. 11, 4119–4123 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gajan, A. et al. Solid electrolyte interphase instability in operating lithium-ion batteries unraveled by enhanced-Raman spectroscopy. ACS Energy Lett. 6, 1757–1763 (2021).

    CAS  Google Scholar 

  63. Xia, C. et al. Single-walled carbon nanotube based SERS substrate with single molecule sensitivity. Nano Res. 15, 694–700 (2021).

    Google Scholar 

  64. Liu, M. et al. π-Conjugated small organic molecule-modified 2D MoS2 with a charge-localization effect enabling direct and sensitive SERS detection. ACS Appl. Mater. Interfaces 14, 56975–56985 (2022).

    CAS  PubMed  Google Scholar 

  65. Kalasung, S. et al. Trace-level detection and classifications of pentaerythritol tetranitrate via geometrically optimized film-based Au/ZnO SERS sensors. Sens. Actuators B Chem. 366, 131986 (2022).

    CAS  Google Scholar 

  66. Yu, D. et al. A new semiconductor-based SERS substrate with enhanced charge collection and improved carrier separation: CuO/TiO2 p-n heterojunction. Chin. Chem. Lett. 34, 107771 (2022).

  67. Madhu, R. et al. Fabrication of highly stable platinum organosols over DNA-scaffolds for enriched catalytic and SERS applications. Dalton Trans. 50, 7198–7211 (2021).

    CAS  PubMed  Google Scholar 

  68. Athira, K. et al. Aggregation induced, formaldehyde tailored nanowire like networks of Cu and their SERS activity. Chem. Phys. Lett. 748, 137390 (2020).

    CAS  Google Scholar 

  69. Chang, Y. L., Su, C. J., Lu, L. C. & Wan, D. Aluminum plasmonic nanoclusters for paper-based surface-enhanced raman spectroscopy. Anal. Chem. 94, 16319–16327 (2022).

    CAS  PubMed  Google Scholar 

  70. Ze, H. et al. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in-situ SERS borrowing strategy. J. Am. Chem. Soc. 143, 1318–1322 (2021).

    CAS  PubMed  Google Scholar 

  71. Lin, S. et al. Direct and simultaneous identification of multiple mitochondrial reactive oxygen species in living cells using a SERS borrowing strategy. Angew. Chem. Int. Ed. 61, e202203511 (2022).

    CAS  Google Scholar 

  72. Fan, Q. et al. A ligand-exchange route to nobel metal nanocrystals with a clean surface for enhanced optical and catalytic properties. Part. Part. Syst. Charact. 34, 1700075 (2017).

    Google Scholar 

  73. Bastus, N. G., Comenge, J. & Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27, 11098–11105 (2011).

    CAS  PubMed  Google Scholar 

  74. Zhao, Y. et al. A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates. J. Raman Spectrosc. 47, 662–667 (2016).

    CAS  Google Scholar 

  75. Mehtala, J. G. et al. Citrate-stabilized gold nanorods. Langmuir 30, 13727–13730 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, Z. et al. Fabrication of porous noble metal nanoparticles based on laser ablation toward water and dealloying for biosensing. Appl. Surf. Sci. 579, 152130 (2022).

    CAS  Google Scholar 

  77. Yuan, H. et al. Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. Xie, L. et al. Key role of direct adsorption on SERS sensitivity: Synergistic effect among target, aggregating agent, and surface with Au or Ag colloid as surface-enhanced Raman spectroscopy substrate. J. Phys. Chem. Lett. 11, 1022–1029 (2020).

    CAS  PubMed  Google Scholar 

  79. Ye, Z., Li, C., Chen, Q., Xu, Y. & Bell, S. E. J. Self-assembly of colloidal nanoparticles into 2D arrays at water-oil interfaces: rational construction of stable SERS substrates with accessible enhancing surfaces and tailored plasmonic response. Nanoscale 13, 5937–5953 (2021).

    CAS  PubMed  Google Scholar 

  80. Dong, D., Fu, R., Shi, Q. & Cheng, W. Self-assembly and characterization of 2D plasmene nanosheets. Nat. Protoc. 14, 2691–2706 (2019).

    CAS  PubMed  Google Scholar 

  81. Cecchini, M. P., Turek, V. A., Paget, J., Kornyshev, A. A. & Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 12, 165–171 (2013).

    CAS  PubMed  Google Scholar 

  82. Wu, G.-Y., Zheng, W., Yang, X.-L., Liu, Q.-J. & Cheng, L. Supramolecular metallacycle-assisted interfacial self-assembly: a promising method of fabricating gold nanoparticle monolayers with precise interparticle spacing for tunable SERS activity. Tetrahedron Lett. 94, 153716 (2022).

    CAS  Google Scholar 

  83. Lu, X. et al. Light-controlled shrinkage of large-area gold nanoparticle monolayer film for tunable SERS activity. Chem. Mater. 30, 1989–1997 (2018).

    CAS  Google Scholar 

  84. Tian, T. et al. Self-assembled plasmonic nanoarrays for enhanced bacterial identification and discrimination. Biosens. Bioelectron. 197, 113778 (2022).

    CAS  PubMed  Google Scholar 

  85. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973).

    CAS  Google Scholar 

  86. Lee, P. & Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86, 3391–3395 (1982).

    CAS  Google Scholar 

  87. Creighton, J. A., Blatchford, C. G. & Albrecht, M. G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2 75, 790–798 (1979).

    CAS  Google Scholar 

  88. Tian, L. et al. Liquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arrays. Nat. Commun. 9, 3642 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Reincke, F. et al. Understanding the self-assembly of charged nanoparticles at the water/oil interface. Phys. Chem. Chem. Phys. 8, 3828–3835 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.L., Z.Y. and Y.X. acknowledge the University Special Research Scholarship (Queen’s University Belfast) for support. S.E.J.B. acknowledges the Engineering and Physical Sciences Research Council (EPSRC) (grant EP/P034063/1) for support. Y.X. acknowledges The Leverhulme Trust Early Career Fellowship (grant ECF2020703) and RSC Researcher Mobility Grant (grant no. RM1602-4142) for support. Y.Z. acknowledges the Chinese Scholarship Council (202008370188) for support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.X., S.E.J.B., C.L. and Z.Y.; investigation, C.L., Y.Z. and Y.X.; formal analysis, C.L., Y.X., S.E.J.B., Z.Y. and Y.Z.; writing—original draft, C.L. and Y.X.; writing—reviewing and editing, Y.X., C.L., S.E.J.B., Z.Y. and Y.Z.; supervision, Y.X. and S.E.J.B.; project administration, Y.X.; funding acquisition, S.E.J.B., Y.X. and Y.Z.

Corresponding authors

Correspondence to Steven E. J. Bell or Yikai Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Maurizio Becucci and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Xu, Y. et al. Nano Lett. 16, 5255–5260 (2016): https://doi.org/10.1021/acs.nanolett.6b02418

Li, C. et al. Chem 8, 2514–2528 (2022): https://doi.org/10.1016/j.chempr.2022.06.008

Ye, Z. et al. JACS Au 2, 178–187 (2022): https://doi.org/10.1021/jacsau.1c00462

Extended data

Extended Data Fig. 1 The aggregation kinetics of CRGC monitored by SERS.

(a) Plot showing the intensity of the Au-Cl vibration band measured over time. (b) SERS spectra of aggregated CRGC obtained 30 seconds, 150 seconds, 300 seconds, 450 seconds, 600 seconds, 750 seconds and 900 seconds after adding in the aggregating agent.

Extended Data Fig. 2 SERS reproducibility data using aggregated colloid.

SERS data obtained from five independent samples of aggregated CRSC.

Extended Data Fig. 3 SEM images of nanoparticle-polymer films formed with incorrect particle concentrations.

(a) A typical CRGC nanoparticle-polymer film formed with low concentrations of particles leading to a loosely packed particle layer. (b) A typical CRGC nanoparticle-polymer film formed with high concentrations of particles leading to the formation of wrinkles in the particle layer. Scale bars, 500 nm.

Extended Data Fig. 4 Optical microscopy image showing a MeLLF sample before and after being damaged by laser irradiation.

(a) A CRSC MeLLF observed with a confocal Raman microscope. (b) The same area of the MeLLF after being damaged with laser irradiation. Scale bars, 100 µm.

Supplementary information

Reporting Summary

Supplementary Video 1

Procedure for making a CRGC nanoparticle–polymer film.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, Y., Ye, Z. et al. Combining surface-accessible Ag and Au colloidal nanomaterials with SERS for in situ analysis of molecule–metal interactions in complex solution environments. Nat Protoc 18, 2717–2744 (2023). https://doi.org/10.1038/s41596-023-00851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00851-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing