Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualizing the structural evolution of individual active sites in MoS2 during electrocatalytic hydrogen evolution reaction

Abstract

Understanding the structural evolution of individual active sites during a reaction is a long-standing target in surface science and catalysis. It is still challenging to precisely characterize in situ the intrinsic nature and evolution of the active site because the active site is too small for characterization techniques to decipher the local properties. Here we used electrochemical tip-enhanced Raman spectroscopy to monitor the geometric and electronic evolution of individual active sites of MoS2 during the hydrogen evolution reaction. Reconstruction regions of 40 nm with varied lattice and electron density from the edge to the nearby basal plane were observed during the hydrogen evolution reaction. We further revealed the progressive generation of active sites during the activation process. The synergistic reconstruction around edge due to the lattice deformation reduces the activation energy barriers and promotes the electrocatalytic reaction. These discoveries offer insights into our understanding of the active site and its dynamics during electrocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EC-TERS study of active and inactive sites in ultrathin MoS2 during the HER.
Fig. 2: EC-TERS spectral evolution of MoS2 during the HER.
Fig. 3: Lattice reconstruction and electronic transition regions induced by the edge.
Fig. 4: EC-TERS study of MoS2 during electrochemical activation.
Fig. 5: Structural evolution of the edge in atomically thin MoS2 in different states.

Similar content being viewed by others

Data availability

Data that support the findings of this study are available within the paper, the Supplementary Information and the Source data files. Additional data are available from the authors upon reasonable request. Source data are provided with this paper.

References

  1. Zhao, S., Yang, Y. & Tang, Z. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew. Chem. Int. Ed. 134, e202110186 (2022).

    Article  Google Scholar 

  2. Li, H., Li, L. & Li, Y. The electronic structure and geometric structure of nanoclusters as catalytic active sites. Nanotechnol. Rev. 2, 515–528 (2013).

    Article  CAS  Google Scholar 

  3. Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Nagashima, S. et al. Atomic-level observation of electrochemical platinum dissolution and redeposition. Nano Lett. 19, 7000–7005 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Pfisterer, J. H. K., Liang, Y., Schneider, O. & Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 549, 74–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Zeng, Z.-C. et al. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Kurouski, D., Mattei, M. & Van Duyne, R. P. Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 15, 7956–7962 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Pfisterer, J. H. K., Baghernejad, M., Giuzio, G. & Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 10, 5702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, S.-C. et al. Probing nanoscale spatial distribution of plasmonically excited hot carriers. Nat. Commun. 11, 4211 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Touzalin, T., Joiret, S., Lucas, I. T. & Maisonhaute, E. Electrochemical tip-enhanced Raman spectroscopy imaging with 8 nm lateral resolution. Electrochem. Commun. 108, 106557 (2019).

    Article  CAS  Google Scholar 

  13. Cao, Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 15, 11014–11039 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Deng, J. et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015).

    Article  CAS  Google Scholar 

  15. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, T.-X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 10, 5544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2013).

    Article  Google Scholar 

  19. Bao, Y.-F. et al. Atomic force microscopy based top-illumination electrochemical tip-enhanced Raman spectroscopy. Anal. Chem. 92, 12548–12555 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, L.-K. et al. Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition. Nanoscale 7, 18225–18231 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Mitterreiter, E. et al. In-situ visualization of hydrogen evolution sites on helium ion treated molybdenum dichalcogenides under reaction conditions. NPJ 2D Mater. Appl. 3, 25 (2019).

    Article  Google Scholar 

  22. Mignuzzi, S. et al. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015).

    Article  Google Scholar 

  23. Sohier, T. et al. Enhanced electron–phonon interaction in multivalley materials. Phys. Rev. 9, 031019 (2019).

    Article  CAS  Google Scholar 

  24. Wu, J.-B., Lin, M.-L., Cong, X., Liu, H.-N. & Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822–1873 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, X. et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Chakraborty, B. et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 161403 (2012).

    Article  Google Scholar 

  27. Huang, Y., Nielsen, R. J., Goddard, W. A. & Soriaga, M. P. The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2. J. Am. Chem. Soc. 137, 6692–6698 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Li, W. et al. Hydrogen evolution reaction mechanism on 2H-MoS2 electrocatalyst. Appl. Surf. Sci. 498, 143869 (2019).

    Article  CAS  Google Scholar 

  29. Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 88, 121301 (2013).

    Article  Google Scholar 

  30. Kim, J. et al. Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices. Nat. Mater. 21, 890–895 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Lunardon, M. et al. Catalytic activity of defect-engineered transition metal dichalcogenides mapped with atomic-scale precision by electrochemical scanning tunneling microscopy. ACS Energy Lett. 8, 972–980 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh, A., Sharma, G., Singh, B. P. & Vasa, P. Charge-induced lattice compression in monolayer MoS2. J. Phys. Chem. C 123, 17943–17950 (2019).

    Article  CAS  Google Scholar 

  33. Lechner, C., Baranek, P. & Vach, H. Adsorption of atomic hydrogen on defect sites of graphite: Influence of surface reconstruction and irradiation damage. Carbon 127, 437–448 (2018).

    Article  CAS  Google Scholar 

  34. Sun, J.-J. & Cheng, J. Solid-to-liquid phase transitions of sub-nanometer clusters enhance chemical transformation. Nat. Commun. 10, 5400 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Zugic, B. et al. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Hu, C. et al. In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis. Chem 3, 122–133 (2017).

    Article  CAS  Google Scholar 

  38. Chia, X., Ambrosi, A., Sofer, Z., Luxa, J. & Pumera, M. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 9, 5164–5179 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Xi, F. et al. Structural transformation identification of sputtered amorphous MoSx as an efficient hydrogen-evolving catalyst during electrochemical activation. ACS Catal. 9, 2368–2380 (2019).

    Article  CAS  Google Scholar 

  40. Li, G. et al. Activating MoS2 for pH-universal hydrogen evolution catalysis. J. Am. Chem. Soc. 139, 16194–16200 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Abidi, N., Bonduelle-Skrzypczak, A. & Steinmann, S. N. How stable are 2H-MoS2 edges under hydrogen dvolution reaction conditions? J. Phys. Chem. C 125, 17058–17067 (2021).

    Article  CAS  Google Scholar 

  43. Hegner, M., Wagner, P. & Semenza, G. Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf. Sci. 291, 39–46 (1993).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  CAS  Google Scholar 

  47. Steinmann, S. N. & Sautet, P. Assessing a first-principles model of an electrochemical interface by comparison with experiment. J. Phys. Chem. C 120, 5619–5623 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (grant numbers 22021001, 22227802, 21790354, 11874350, 92061118, 22372141 and 62374158), the National Key R&D Program of China (grant number 2023YFA1407000), the Strategic Priority Research Program of CAS (grant number XDB0460000), the Fundamental Research Funds for the Central Universities (grant number 20720220016) and the CAS Key Research Program of Frontier Sciences (grant numbers ZDBS-LY-SLH004 and XDPB22). We thank X. Yang for his assistance with theoretical discussion.

Author information

Authors and Affiliations

Authors

Contributions

T.-X.H., X.W. and B.R. conceived the project. T.-X.H., S.-S.W. and Y.-F.B. performed the experiments. M.-F.C. fabricated the SiO2-coated gold tip. X.C., J.-B.W., M.-L.L. and P.-H.T. performed the DFT calculations. L.W. helped with the experiments. T.-X.H., X.C., X.W. and B.R. wrote the manuscript. All authors participated in the analysis and discussion.

Corresponding authors

Correspondence to Xiang Wang, Ping-Heng Tan or Bin Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Patrick Unwin, Katrin F. Domke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Notes 1–5 and Tables 1 and 2.

Supplementary Data 1

Atomic coordinates of optimized computational models.

Source data

Source Data Fig. 1

Source data used to plot Fig. 1

Source Data Fig. 2

Source data used to plot Fig. 2

Source Data Fig. 3

Source data used to plot Fig. 3

Source Data Fig. 4

Source data used to plot Fig. 4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TX., Cong, X., Wu, SS. et al. Visualizing the structural evolution of individual active sites in MoS2 during electrocatalytic hydrogen evolution reaction. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01148-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing