Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Microlensed fiber allows subcellular imaging by laser-based mass spectrometry

Abstract

Mass spectrometry imaging (MSI) enables the chemical mapping of molecules and elements in a label-free, high-throughput manner. Because this approach can be accomplished rapidly, it also enables chemical changes to be monitored. Here, we describe a protocol for MSI with subcellular spatial resolution. This is achieved by using a microlensed fiber, which is made by grinding an optical fiber. It is a universal and economic technique that can be adapted to most laser-based mass spectrometry methods. In this protocol, the output of laser radiation from the microlensed fiber causes laser ablation of the sample, and the resulting plume is mass spectrometrically analyzed. The microlensed fiber can be used with matrix-assisted laser desorption ionization, laser desorption ionization, laser ablation electrospray desorption ionization and laser ablation inductively coupled plasma, in each case to achieve submicroscale imaging of single cells and biological tissues. This report provides a detailed introduction of the microlensed fiber design and working principles, sample preparation, microlensed fiber ion source setup and multiple MSI platforms with different kinds of mass spectrometers. A researcher with a little background (such as a trained graduate student) is able to complete all the steps for the experimental setup in ~2 h, including fiber test, laser coupling and ion source modification. The imaging time spent mainly depends on the size of the imaging area. It is suggested that most existing laser-based MSI platforms, especially atmospheric pressure applications, can achieve breakthroughs in spatial resolution by introducing a microlensed fiber module.

Key points

  • A microlens capable of focusing laser radiation is formed by rounding one end of an optical fiber. Focusing light on smaller spots improves the resolution of laser desorption or ablation sample surfaces, making nanoscale mass spectrometry imaging analysis possible.

  • Microlensed fibers can be incorporated into matrix-assisted laser desorption ionization, laser desorption ionization, laser ablation electrospray desorption ionization and laser ablation inductively coupled plasma setups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of the microlensed fiber and its positioning.
Fig. 2: Schematics of different types of laser-based MSI platforms with the microlensed fiber.
Fig. 3: Spatial resolution of the MSI with a microlensed fiber.
Fig. 4: Tissue imaging achieved by laser-based MSI with a microlensed fiber.
Fig. 5: Single-cell imaging achieved by laser-based MSI with the microlensed fiber.

Similar content being viewed by others

Data availability

The data presented in Anticipated results are from previous publications22,24,26 and are available from the corresponding authors. The figures have been rearranged and embedded.

Code availability

The LabVIEW and MATLAB programs are available from https://github.com/yfmeng1121/SmarAct-micropositioner-control.

References

  1. McDonnell, L. A. & Heeren, R. M. A. Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Seeley, E. H. & Caprioli, R. M. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol. 29, 136–143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240–265 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, C., Dill, A. L., Eberlin, L. S., Cooks, R. G. & Ifa, D. R. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32, 218–243 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Lanni, E. J., Rubakhin, S. S. & Sweedler, J. V. Mass spectrometry imaging and profiling of single cells. J. Proteom. 75, 5036–5051 (2012).

    Article  CAS  Google Scholar 

  6. Unsihuay, D., Sanchez, D. M. & Laskin, J. Quantitative mass spectrometry imaging of biological systems. Annu. Rev. Phys. Chem. 72, 307–329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doble, P. A., de Vega, R. G., Bishop, D. P., Hare, D. J. & Clases, D. Laser ablation–inductively coupled plasma–mass spectrometry imaging in biology. Chem. Rev. 121, 11769–11822 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, Y., Xie, Y., Li, L., Wang, Z. & Yang, L. Advances in mass spectrometry imaging for toxicological analysis and safety evaluation of pharmaceuticals. Mass Spectrom. Rev. 22, e21807 (2022).

    Article  Google Scholar 

  9. Granborg, J. R., Handler, A. M. & Janfelt, C. Mass spectrometry imaging in drug distribution and drug metabolism studies—principles, applications and perspectives. Trends Anal. Chem. 146, 116482 (2022).

    Article  CAS  Google Scholar 

  10. Ma, X. & Fernández, F. M. Advances in mass spectrometry imaging for spatial cancer metabolomics. Mass Spectrom. Rev. 6, e21804 (2022).

    Article  Google Scholar 

  11. Chen, S. et al. Mass spectrometry imaging reveals the sub-organ distribution of carbon nanomaterials. Nat. Nanotechnol. 10, 176–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Xue, J. et al. Mass spectrometry imaging of the in situ drug release from nanocarriers. Sci. Adv. 4, eaat9039 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, J. et al. Polydopamine-modified substrates for high-sensitivity laser desorption ionization mass spectrometry imaging. ACS Appl. Mater. Interfaces 11, 46140–46148 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Neumann, E. K., Comi, T. J., Rubakhin, S. S. & Sweedler, J. V. Lipid heterogeneity between astrocytes and neurons revealed by single-cell MALDI-MS combined with immunocytochemical classification. Angew. Chem. Int. Ed. Engl. 58, 5910–5914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Cornett, D. S., Reyzer, M. L., Chaurand, P. & Caprioli, R. M. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods 4, 828–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, R. et al. Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules. Acc. Chem. Res. 49, 775–783 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Drescher, D. et al. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal. Chem. 84, 9684–9688 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, H. A. O. et al. Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 85, 10107–10116 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Stolee, J. A., Shrestha, B., Mengistu, G. & Vertes, A. Observation of subcellular metabolite gradients in single cells by laser ablation electrospray ionization mass spectrometry. Angew. Chem. Int. Ed. Engl. 51, 10386–10389 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Meng, Y., Song, X. & Zare, R. N. Laser ablation electrospray ionization achieves 5 μm resolution using a microlensed fiber. Anal. Chem. 94, 10278–10282 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, T. et al. Perspective on advances in laser-based high-resolution mass spectrometry imaging. Anal. Chem. 92, 543–553 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Meng, Y. et al. Micro-lensed fiber laser desorption mass spectrometry imaging reveals subcellular distribution of drugs within single cells. Angew. Chem. Int. Ed. Engl. 59, 17864–17871 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Meng, Y., Ma, S., Zhang, Z. & Hang, W. 3D nanoscale chemical imaging of core–shell microspheres via microlensed fiber laser desorption postionization mass spectrometry. Anal. Chem. 92, 9916–9921 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Meng, Y., Gao, C., Lu, Q., Ma, S. & Hang, W. Single-cell mass spectrometry imaging of multiple drugs and nanomaterials at organelle level. ACS Nano 15, 13220–13229 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Li, X. et al. Nanoscale three-dimensional imaging of drug distributions in single cells via laser desorption post-ionization mass spectrometry. J. Am. Chem. Soc. 143, 21648–21656 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Hanley, L. & Zimmermann, R. Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal. Chem. 81, 4174–4182 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zenobi, R. & Knochenmuss, R. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 17, 337–366 (1998).

    Article  CAS  Google Scholar 

  30. Sylvester, P. (ed.) in Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues Vol. 40, Ch. 5, 67–78 (Mineralogical Association of Canada, 2008).

    Google Scholar 

  31. Motelica-Heino, M., Le Coustumer, P. & Donard, O. F. X. Micro- and macro-scale investigation of fractionation and matrix effects in LA-ICP-MS at 1064 nm and 266 nm on glassy materials. J. Anal. Spectrom. 16, 542–550 (2001).

    Article  CAS  Google Scholar 

  32. Shrestha, B. & Vertes, A. In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 81, 8265–8271 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Stolee, J. A. & Vertes, A. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry. Anal. Chem. 85, 3592–3598 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Passarelli, M. K. et al. The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14, 1175–1183 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Takáts, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004).

    Article  PubMed  Google Scholar 

  36. Eberlin, L. S. et al. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. Proc. Natl Acad. Sci. USA 111, 2436–2441 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eberlin, L. S. et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc. Natl Acad. Sci. USA 110, 1611–1616 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wedlock, L. E. et al. NanoSIMS multi-element imaging reveals internalisation and nucleolar targeting for a highly-charged polynuclear platinum compound. Chem. Commun. 49, 6944–6946 (2013).

    Article  CAS  Google Scholar 

  39. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yuan, Z. et al. SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment. Nat. Methods 18, 1223–1232 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Wiseman, J. M. et al. Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc. Natl Acad. Sci. USA 105, 18120–18125 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yin, R., Burnum-Johnson, K. E., Sun, X., Dey, S. K. & Laskin, J. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nat. Protoc. 14, 3445–3470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kompauer, M., Heiles, S. & Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14, 90–96 (2016).

    Article  PubMed  Google Scholar 

  44. Zavalin, A. et al. Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J. Mass Spectrom. 47, 1473–1481 (2012).

    Article  PubMed  Google Scholar 

  45. Spivey, E. C., McMillen, J. C., Ryan, D. J., Spraggins, J. M. & Caprioli, R. M. Combining MALDI-2 and transmission geometry laser optics to achieve high sensitivity for ultra-high spatial resolution surface analysis. J. Mass Spectrom. 54, 366–370 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Niehaus, M., Soltwisch, J., Belov, M. E. & Dreisewerd, K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 16, 925–931 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Yin, Z. et al. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry. Angew. Chem. Int. Ed. Engl. 58, 4541–4546 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Liang, Z. et al. Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis. Sci. Adv. 3, eaaq1059 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schmitz, T. A., Gamez, G., Setz, P. D., Zhu, L. & Zenobi, R. Towards nanoscale molecular analysis at atmospheric pressure by a near-field laser ablation ion trap/time-of-flight mass spectrometer. Anal. Chem. 80, 6537–6544 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, J. et al. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters. Anal. Chem. 90, 10009–10015 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Kuznetsov, I. et al. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry. Nat. Commun. 6, 6944 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Lu, Q., Xu, Z., You, X., Ma, S. & Zenobi, R. Atmospheric pressure mass spectrometry imaging using laser ablation, followed by dielectric barrier discharge ionization. Anal. Chem. 93, 6232–6238 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Lu, Q., Guan, X., You, X., Xu, Z. & Zenobi, R. High-spatial resolution atmospheric pressure mass spectrometry imaging using fiber probe laser ablation-dielectric barrier discharge ionization. Anal. Chem. 93, 14694–14700 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Dolmans, D. E. J. G. J., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Gong, X. et al. Single cell analysis with probe ESI-mass spectrometry: detection of metabolites at cellular and subcellular levels. Anal. Chem. 86, 3809–3816 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Fujii, T. et al. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat. Protoc. 10, 1445–1456 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, H. et al. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc. Natl Acad. Sci. USA 114, 2586–2591 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu, K., Nguyen, T. D. K., Rabasco, S., Oomen, P. E. & Ewing, A. G. Chemical analysis of single cells and organelles. Anal. Chem. 93, 41–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, S., Liu, M., Bai, Y. & Liu, H. Multi-dimensional organic mass cytometry: simultaneous analysis of proteins and metabolites on single cells. Angew. Chem. Int. Ed. Engl. 60, 1806–1812 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Zenobi, R. Single-cell metabolomics: analytical and biological perspectives. Science 342, 1243259 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Comi, T. J., Do, T. D., Rubakhin, S. S. & Sweedler, J. V. Categorizing cells on the basis of their chemical profiles: progress in single-cell mass spectrometry. J. Am. Chem. Soc. 139, 3920–3929 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, S. G. et al. Enhanced anti-tumour effects of acriflavine in combination with guanosine in mice. J. Pharm. Pharmacol. 49, 216–222 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (21974116 and 22027808) and the Air Force Office of Scientific Research through the Multidisciplinary University Research Initiative (MURI) program (AFOSR FA9550-21-1-0170).

Author information

Authors and Affiliations

Authors

Contributions

W.H., R.N.Z. and Y.M. developed the procedure. Y.M. performed the imaging experiments and processed the data. The manuscript was written by all authors.

Corresponding authors

Correspondence to Wei Hang or Richard N. Zare.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Li Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Meng, Y. et al. Angew. Chem. Int. Ed. Engl. 59, 17864–17871 (2020): https://doi.org/10.1002/anie.202002151

Meng, Y. et al. ACS Nano 15, 13220–13229 (2021): https://doi.org/10.1021/acsnano.1c02922

Meng, Y. et al. Anal. Chem. 94, 10278–10282 (2022): https://doi.org/10.1021/acs.analchem.2c01942

Supplementary information

Supplementary Information

Supplementary Figs. 1–12

Reporting Summary

Supplementary Video 1

MS imaging of a marker pen pattern (sample) on a glass slide with a microlensed fiber

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Hang, W. & Zare, R.N. Microlensed fiber allows subcellular imaging by laser-based mass spectrometry. Nat Protoc 18, 2558–2578 (2023). https://doi.org/10.1038/s41596-023-00848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00848-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing